Particulate cadmium stable isotopes in the subarctic northeast Pacific reveal dynamic Cd cycling and a new isotopically light Cd sink

The nutrient-type distribution of dissolved cadmium concentrations (dCd) reflects a biological control in the global ocean, with uptake of dissolved Cd into biogenic particles in surface waters and regeneration of particulate Cd at depth. Depth profiles of dissolved Cd stable isotope composition (d)...

Full description

Bibliographic Details
Published in:Earth and Planetary Science Letters
Main Authors: Janssen, D., Abouchami, W., Galer, S., Purdon, K., Cullen, J.
Format: Article in Journal/Newspaper
Language:English
Published: 2019
Subjects:
Online Access:http://hdl.handle.net/21.11116/0000-0003-ECAE-0
id ftpubman:oai:pure.mpg.de:item_3080821
record_format openpolar
spelling ftpubman:oai:pure.mpg.de:item_3080821 2023-08-20T04:10:03+02:00 Particulate cadmium stable isotopes in the subarctic northeast Pacific reveal dynamic Cd cycling and a new isotopically light Cd sink Janssen, D. Abouchami, W. Galer, S. Purdon, K. Cullen, J. 2019 http://hdl.handle.net/21.11116/0000-0003-ECAE-0 eng eng info:eu-repo/semantics/altIdentifier/doi/10.1016/j.epsl.2019.03.006 http://hdl.handle.net/21.11116/0000-0003-ECAE-0 Earth and Planetary Science Letters info:eu-repo/semantics/article 2019 ftpubman https://doi.org/10.1016/j.epsl.2019.03.006 2023-08-01T23:56:19Z The nutrient-type distribution of dissolved cadmium concentrations (dCd) reflects a biological control in the global ocean, with uptake of dissolved Cd into biogenic particles in surface waters and regeneration of particulate Cd at depth. Depth profiles of dissolved Cd stable isotope composition (d), while sparse in coverage, exist for most of the major ocean basins, with spatial coverage improving through the efforts of the GEOTRACES program. However, a dearth of similarly resolved particulate (pCd) distributions limits our ability to use stable Cd isotopes to better understand Cd cycling in the global ocean. Here we present two p depth profiles from the subarctic northeast Pacific which demonstrate more complex cycling than dissolved profiles would suggest. Surface p , while lighter than surface dCd, is heavy relative to Pacific deepwater and crustal p components. Surface particulate and dissolved distributions are not well explained by closed-system Rayleigh fractionation following a single fractionation factor, in agreement with other recent studies in the Atlantic and Pacific Oceans. These variable fractionation trends in surface waters complicate the potential utility of as a paleoproductivity proxy. Particulate becomes lighter as particulate Cd is remineralized in the nutricline, reaching a minimum p of around −0.5‰, among the lightest values reported in natural telluric samples. This pCd trend within the nutricline might be explained by (1) multiple pools of particulate Cd with different isotopic compositions and labilities, or (2) by fractionation during particulate Cd remineralization. The observed shallow loss of heavy p above the winter mixed layer, rather than the formation of especially light surface p, may help to maintain the observed surface-to-deep d gradient. Below the mid-depth p minimum, p increases with depth toward the deepwater d value, possibly reflecting an isotopic equilibration between the particulate and dissolved phases. Dissolved profiles show uniform isotope composition at ... Article in Journal/Newspaper Subarctic Max Planck Society: MPG.PuRe Pacific Earth and Planetary Science Letters 515 67 78
institution Open Polar
collection Max Planck Society: MPG.PuRe
op_collection_id ftpubman
language English
description The nutrient-type distribution of dissolved cadmium concentrations (dCd) reflects a biological control in the global ocean, with uptake of dissolved Cd into biogenic particles in surface waters and regeneration of particulate Cd at depth. Depth profiles of dissolved Cd stable isotope composition (d), while sparse in coverage, exist for most of the major ocean basins, with spatial coverage improving through the efforts of the GEOTRACES program. However, a dearth of similarly resolved particulate (pCd) distributions limits our ability to use stable Cd isotopes to better understand Cd cycling in the global ocean. Here we present two p depth profiles from the subarctic northeast Pacific which demonstrate more complex cycling than dissolved profiles would suggest. Surface p , while lighter than surface dCd, is heavy relative to Pacific deepwater and crustal p components. Surface particulate and dissolved distributions are not well explained by closed-system Rayleigh fractionation following a single fractionation factor, in agreement with other recent studies in the Atlantic and Pacific Oceans. These variable fractionation trends in surface waters complicate the potential utility of as a paleoproductivity proxy. Particulate becomes lighter as particulate Cd is remineralized in the nutricline, reaching a minimum p of around −0.5‰, among the lightest values reported in natural telluric samples. This pCd trend within the nutricline might be explained by (1) multiple pools of particulate Cd with different isotopic compositions and labilities, or (2) by fractionation during particulate Cd remineralization. The observed shallow loss of heavy p above the winter mixed layer, rather than the formation of especially light surface p, may help to maintain the observed surface-to-deep d gradient. Below the mid-depth p minimum, p increases with depth toward the deepwater d value, possibly reflecting an isotopic equilibration between the particulate and dissolved phases. Dissolved profiles show uniform isotope composition at ...
format Article in Journal/Newspaper
author Janssen, D.
Abouchami, W.
Galer, S.
Purdon, K.
Cullen, J.
spellingShingle Janssen, D.
Abouchami, W.
Galer, S.
Purdon, K.
Cullen, J.
Particulate cadmium stable isotopes in the subarctic northeast Pacific reveal dynamic Cd cycling and a new isotopically light Cd sink
author_facet Janssen, D.
Abouchami, W.
Galer, S.
Purdon, K.
Cullen, J.
author_sort Janssen, D.
title Particulate cadmium stable isotopes in the subarctic northeast Pacific reveal dynamic Cd cycling and a new isotopically light Cd sink
title_short Particulate cadmium stable isotopes in the subarctic northeast Pacific reveal dynamic Cd cycling and a new isotopically light Cd sink
title_full Particulate cadmium stable isotopes in the subarctic northeast Pacific reveal dynamic Cd cycling and a new isotopically light Cd sink
title_fullStr Particulate cadmium stable isotopes in the subarctic northeast Pacific reveal dynamic Cd cycling and a new isotopically light Cd sink
title_full_unstemmed Particulate cadmium stable isotopes in the subarctic northeast Pacific reveal dynamic Cd cycling and a new isotopically light Cd sink
title_sort particulate cadmium stable isotopes in the subarctic northeast pacific reveal dynamic cd cycling and a new isotopically light cd sink
publishDate 2019
url http://hdl.handle.net/21.11116/0000-0003-ECAE-0
geographic Pacific
geographic_facet Pacific
genre Subarctic
genre_facet Subarctic
op_source Earth and Planetary Science Letters
op_relation info:eu-repo/semantics/altIdentifier/doi/10.1016/j.epsl.2019.03.006
http://hdl.handle.net/21.11116/0000-0003-ECAE-0
op_doi https://doi.org/10.1016/j.epsl.2019.03.006
container_title Earth and Planetary Science Letters
container_volume 515
container_start_page 67
op_container_end_page 78
_version_ 1774723941639651328