Potential and costs of carbon dioxide removal by enhanced weathering of rocks

Abstract The chemical weathering of rocks currently absorbs about 1.1 Gt CO2 a(-1) being mainly stored as bicarbonate in the ocean. An enhancement of this slow natural process could remove substantial amounts of CO2 from the atmosphere, aiming to offset some unavoidable anthropogenic emissions in or...

Full description

Bibliographic Details
Published in:Environmental Research Letters
Main Authors: Strefler, J., Amann, T., Bauer, N., Kriegler, E., Hartmann, J.
Format: Article in Journal/Newspaper
Language:English
Published: 2018
Subjects:
Online Access:http://hdl.handle.net/21.11116/0000-0002-15CA-3
http://hdl.handle.net/21.11116/0000-0002-15CC-1
id ftpubman:oai:pure.mpg.de:item_2642729
record_format openpolar
spelling ftpubman:oai:pure.mpg.de:item_2642729 2023-08-20T04:09:02+02:00 Potential and costs of carbon dioxide removal by enhanced weathering of rocks Strefler, J. Amann, T. Bauer, N. Kriegler, E. Hartmann, J. 2018-03-05 application/pdf http://hdl.handle.net/21.11116/0000-0002-15CA-3 http://hdl.handle.net/21.11116/0000-0002-15CC-1 eng eng info:eu-repo/semantics/altIdentifier/doi/10.1088/1748-9326/aaa9c4 http://hdl.handle.net/21.11116/0000-0002-15CA-3 http://hdl.handle.net/21.11116/0000-0002-15CC-1 info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/3.0/ Environmental Research Letters info:eu-repo/semantics/article 2018 ftpubman https://doi.org/10.1088/1748-9326/aaa9c4 2023-08-01T23:22:46Z Abstract The chemical weathering of rocks currently absorbs about 1.1 Gt CO2 a(-1) being mainly stored as bicarbonate in the ocean. An enhancement of this slow natural process could remove substantial amounts of CO2 from the atmosphere, aiming to offset some unavoidable anthropogenic emissions in order to comply with the Paris Agreement, while at the same time it may decrease ocean acidification. We provide the first comprehensive assessment of economic costs, energy requirements, technical parameterization, and global and regional carbon removal potential. The crucial parameters defining this potential are the grain size and weathering rates. The main uncertainties about the potential relate to weathering rates and rock mass that can be integrated into the soil. The discussed results do not specifically address the enhancement of weathering through microbial processes, feedback of geogenic nutrient release, and bioturbation. We do not only assess dunite rock, predominantly bearing olivine (in the form of forsterite) as the mineral that has been previously proposed to be best suited for carbon removal, but focus also on basaltic rock to minimize potential negative side effects. Our results show that enhanced weathering is an option for carbon dioxide removal that could be competitive already at 60 US $ t(-1) CO2 removed for dunite, but only at 200 US $ t(-1) CO2 removed for basalt. The potential carbon removal on cropland areas could be as large as 95 Gt CO2 a(-1) for dunite and 4.9 Gt CO2 a(-1) for basalt. The best suited locations are warm and humid areas, particularly in India, Brazil, South-East Asia and China, where almost 75% of the global potential can be realized. This work presents a techno-economic assessment framework, which also allows for the incorporation of further processes. Article in Journal/Newspaper Ocean acidification Max Planck Society: MPG.PuRe Environmental Research Letters 13 3 034010
institution Open Polar
collection Max Planck Society: MPG.PuRe
op_collection_id ftpubman
language English
description Abstract The chemical weathering of rocks currently absorbs about 1.1 Gt CO2 a(-1) being mainly stored as bicarbonate in the ocean. An enhancement of this slow natural process could remove substantial amounts of CO2 from the atmosphere, aiming to offset some unavoidable anthropogenic emissions in order to comply with the Paris Agreement, while at the same time it may decrease ocean acidification. We provide the first comprehensive assessment of economic costs, energy requirements, technical parameterization, and global and regional carbon removal potential. The crucial parameters defining this potential are the grain size and weathering rates. The main uncertainties about the potential relate to weathering rates and rock mass that can be integrated into the soil. The discussed results do not specifically address the enhancement of weathering through microbial processes, feedback of geogenic nutrient release, and bioturbation. We do not only assess dunite rock, predominantly bearing olivine (in the form of forsterite) as the mineral that has been previously proposed to be best suited for carbon removal, but focus also on basaltic rock to minimize potential negative side effects. Our results show that enhanced weathering is an option for carbon dioxide removal that could be competitive already at 60 US $ t(-1) CO2 removed for dunite, but only at 200 US $ t(-1) CO2 removed for basalt. The potential carbon removal on cropland areas could be as large as 95 Gt CO2 a(-1) for dunite and 4.9 Gt CO2 a(-1) for basalt. The best suited locations are warm and humid areas, particularly in India, Brazil, South-East Asia and China, where almost 75% of the global potential can be realized. This work presents a techno-economic assessment framework, which also allows for the incorporation of further processes.
format Article in Journal/Newspaper
author Strefler, J.
Amann, T.
Bauer, N.
Kriegler, E.
Hartmann, J.
spellingShingle Strefler, J.
Amann, T.
Bauer, N.
Kriegler, E.
Hartmann, J.
Potential and costs of carbon dioxide removal by enhanced weathering of rocks
author_facet Strefler, J.
Amann, T.
Bauer, N.
Kriegler, E.
Hartmann, J.
author_sort Strefler, J.
title Potential and costs of carbon dioxide removal by enhanced weathering of rocks
title_short Potential and costs of carbon dioxide removal by enhanced weathering of rocks
title_full Potential and costs of carbon dioxide removal by enhanced weathering of rocks
title_fullStr Potential and costs of carbon dioxide removal by enhanced weathering of rocks
title_full_unstemmed Potential and costs of carbon dioxide removal by enhanced weathering of rocks
title_sort potential and costs of carbon dioxide removal by enhanced weathering of rocks
publishDate 2018
url http://hdl.handle.net/21.11116/0000-0002-15CA-3
http://hdl.handle.net/21.11116/0000-0002-15CC-1
genre Ocean acidification
genre_facet Ocean acidification
op_source Environmental Research Letters
op_relation info:eu-repo/semantics/altIdentifier/doi/10.1088/1748-9326/aaa9c4
http://hdl.handle.net/21.11116/0000-0002-15CA-3
http://hdl.handle.net/21.11116/0000-0002-15CC-1
op_rights info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by/3.0/
op_doi https://doi.org/10.1088/1748-9326/aaa9c4
container_title Environmental Research Letters
container_volume 13
container_issue 3
container_start_page 034010
_version_ 1774721677208322048