Methane production as key to the greenhouse gas budget of thawing permafrost

Abstract Permafrost thaw liberates frozen organic carbon, which is decomposed into carbon dioxide (CO2) and methane (CH4). The release of these greenhouse gases (GHGs) forms a positive feedback to atmospheric CO2 and CH4 concentrations and accelerates climate change(1,2). Current studies report a mi...

Full description

Bibliographic Details
Published in:Nature Climate Change
Main Authors: Knoblauch, C., Beer, C., Liebner, S., Grigoriev, M., Pfeiffer, E.
Format: Article in Journal/Newspaper
Language:English
Published: 2018
Subjects:
Online Access:http://hdl.handle.net/21.11116/0000-0002-139B-A
id ftpubman:oai:pure.mpg.de:item_2642246
record_format openpolar
spelling ftpubman:oai:pure.mpg.de:item_2642246 2023-08-20T04:09:08+02:00 Methane production as key to the greenhouse gas budget of thawing permafrost Knoblauch, C. Beer, C. Liebner, S. Grigoriev, M. Pfeiffer, E. 2018-03-19 http://hdl.handle.net/21.11116/0000-0002-139B-A eng eng info:eu-repo/semantics/altIdentifier/doi/10.1038/s41558-018-0095-z http://hdl.handle.net/21.11116/0000-0002-139B-A Nature Climate Change info:eu-repo/semantics/article 2018 ftpubman https://doi.org/10.1038/s41558-018-0095-z 2023-08-01T23:24:10Z Abstract Permafrost thaw liberates frozen organic carbon, which is decomposed into carbon dioxide (CO2) and methane (CH4). The release of these greenhouse gases (GHGs) forms a positive feedback to atmospheric CO2 and CH4 concentrations and accelerates climate change(1,2). Current studies report a minor importance of CH4 production in water-saturated (anoxic) permafrost soils(3-6) and a stronger permafrost carbon-climate feedback from drained (oxic) soils(1,7). Here we show through seven-year laboratory incubations that equal amounts of CO2 and CH4 are formed in thawing permafrost under anoxic conditions after stable CH4-producing microbial communities have established. Less permafrost carbon was mineralized under anoxic conditions but more CO2-carbon equivalents (CO2Ce) were formed than under oxic conditions when the higher global warming potential (GWP) of CH4 is taken into account(8). A model of organic carbon decomposition, calibrated with the observed decomposition data, predicts a higher loss of permafrost carbon under oxic conditions (113 +/- 58 g CO2-C kgC(-1) (kgC, kilograms of carbon)) by 2100, but a twice as high production of CO2-Ce (241 +/- 138 g CO2-Ce kgC(-1)) under anoxic conditions. These findings challenge the view of a stronger permafrost carbon-climate feedback from drained soils1,7 and emphasize the importance of CH4 production in thawing permafrost on climate-relevant timescales. Article in Journal/Newspaper permafrost Max Planck Society: MPG.PuRe Nature Climate Change 8 4 309 312
institution Open Polar
collection Max Planck Society: MPG.PuRe
op_collection_id ftpubman
language English
description Abstract Permafrost thaw liberates frozen organic carbon, which is decomposed into carbon dioxide (CO2) and methane (CH4). The release of these greenhouse gases (GHGs) forms a positive feedback to atmospheric CO2 and CH4 concentrations and accelerates climate change(1,2). Current studies report a minor importance of CH4 production in water-saturated (anoxic) permafrost soils(3-6) and a stronger permafrost carbon-climate feedback from drained (oxic) soils(1,7). Here we show through seven-year laboratory incubations that equal amounts of CO2 and CH4 are formed in thawing permafrost under anoxic conditions after stable CH4-producing microbial communities have established. Less permafrost carbon was mineralized under anoxic conditions but more CO2-carbon equivalents (CO2Ce) were formed than under oxic conditions when the higher global warming potential (GWP) of CH4 is taken into account(8). A model of organic carbon decomposition, calibrated with the observed decomposition data, predicts a higher loss of permafrost carbon under oxic conditions (113 +/- 58 g CO2-C kgC(-1) (kgC, kilograms of carbon)) by 2100, but a twice as high production of CO2-Ce (241 +/- 138 g CO2-Ce kgC(-1)) under anoxic conditions. These findings challenge the view of a stronger permafrost carbon-climate feedback from drained soils1,7 and emphasize the importance of CH4 production in thawing permafrost on climate-relevant timescales.
format Article in Journal/Newspaper
author Knoblauch, C.
Beer, C.
Liebner, S.
Grigoriev, M.
Pfeiffer, E.
spellingShingle Knoblauch, C.
Beer, C.
Liebner, S.
Grigoriev, M.
Pfeiffer, E.
Methane production as key to the greenhouse gas budget of thawing permafrost
author_facet Knoblauch, C.
Beer, C.
Liebner, S.
Grigoriev, M.
Pfeiffer, E.
author_sort Knoblauch, C.
title Methane production as key to the greenhouse gas budget of thawing permafrost
title_short Methane production as key to the greenhouse gas budget of thawing permafrost
title_full Methane production as key to the greenhouse gas budget of thawing permafrost
title_fullStr Methane production as key to the greenhouse gas budget of thawing permafrost
title_full_unstemmed Methane production as key to the greenhouse gas budget of thawing permafrost
title_sort methane production as key to the greenhouse gas budget of thawing permafrost
publishDate 2018
url http://hdl.handle.net/21.11116/0000-0002-139B-A
genre permafrost
genre_facet permafrost
op_source Nature Climate Change
op_relation info:eu-repo/semantics/altIdentifier/doi/10.1038/s41558-018-0095-z
http://hdl.handle.net/21.11116/0000-0002-139B-A
op_doi https://doi.org/10.1038/s41558-018-0095-z
container_title Nature Climate Change
container_volume 8
container_issue 4
container_start_page 309
op_container_end_page 312
_version_ 1774721871191736320