Atlantic Ocean heat transport influences interannual-to-decadal surface temperature predictability in the North Atlantic region

AbstractAn analysis of a three-member ensemble of initialized coupled simulations with the MPI-ESM-LR covering the period 1901–2010 shows that Atlantic northward ocean heat transport (OHT) at 50°N influences surface temperature variability in the North Atlantic region for several years. Three to ten...

Full description

Bibliographic Details
Published in:Journal of Climate
Main Authors: Borchert, L., Müller, W., Baehr, J.
Format: Article in Journal/Newspaper
Language:English
Published: 2018
Subjects:
Online Access:http://hdl.handle.net/21.11116/0000-0001-DBFF-A
http://hdl.handle.net/21.11116/0000-0001-DC01-6
Description
Summary:AbstractAn analysis of a three-member ensemble of initialized coupled simulations with the MPI-ESM-LR covering the period 1901–2010 shows that Atlantic northward ocean heat transport (OHT) at 50°N influences surface temperature variability in the North Atlantic region for several years. Three to ten years after strong OHT phases at 50°N, a characteristic pattern of sea surface temperature (SST) anomalies emerges: warm anomalies are found in the North Atlantic and cold anomalies emerge in the Gulf Stream region. This pattern originates from persistent upper-ocean heat content anomalies that originate from southward-propagating OHT anomalies in the North Atlantic. Interannual-to-decadal SST predictability of yearly initialized hindcasts is linked to this SST pattern: when ocean heat transport at 50°N is strong at the initialization of a hindcast, SST anomaly correlation coefficients in the northeast Atlantic at lead years 2–9 are significantly higher than when the ocean heat transport at 50°N is weak at initialization. Surface heat fluxes that mask the predictable low-frequency oceanic variability that influences SSTs in the northwest Atlantic after strong OHT phases, and in the northwest and northeast Atlantic after weak OHT phases at 50°N lead to zonally asymmetrically predictable SSTs 7–9 years ahead. This study shows that the interannual-to-decadal predictability of North Atlantic SSTs depends strongly on the strength of subpolar ocean heat transport at the start of a prediction, indicating that physical mechanisms need to be taken into account for actual temperature predictions.