Characterisation of short-term extreme methane fluxes related to non-turbulent mixing above an Arctic permafrost ecosystem

Methane (CH4) emissions from biogenic sources, such as Arctic permafrost wetlands, are associated with large uncertainties because of the high variability of fluxes in both space and time. This variability poses a challenge to monitoring CH4 fluxes with the eddy covariance (EC) technique, because th...

Full description

Bibliographic Details
Published in:Atmospheric Chemistry and Physics
Main Authors: Schaller, C., Kittler, F., Foken, T., Göckede, M.
Format: Article in Journal/Newspaper
Language:unknown
Published: 2019
Subjects:
Online Access:http://hdl.handle.net/21.11116/0000-0001-7877-3
http://hdl.handle.net/21.11116/0000-0003-4B78-3
id ftpubman:oai:pure.mpg.de:item_2601837
record_format openpolar
spelling ftpubman:oai:pure.mpg.de:item_2601837 2023-08-20T04:04:27+02:00 Characterisation of short-term extreme methane fluxes related to non-turbulent mixing above an Arctic permafrost ecosystem Schaller, C. Kittler, F. Foken, T. Göckede, M. 2019-04-01 application/pdf http://hdl.handle.net/21.11116/0000-0001-7877-3 http://hdl.handle.net/21.11116/0000-0003-4B78-3 unknown info:eu-repo/semantics/altIdentifier/doi/10.5194/acp-19-4041-2019 http://hdl.handle.net/21.11116/0000-0001-7877-3 http://hdl.handle.net/21.11116/0000-0003-4B78-3 info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/4.0/ Atmospheric Chemistry and Physics info:eu-repo/semantics/article 2019 ftpubman https://doi.org/10.5194/acp-19-4041-2019 2023-08-01T23:06:14Z Methane (CH4) emissions from biogenic sources, such as Arctic permafrost wetlands, are associated with large uncertainties because of the high variability of fluxes in both space and time. This variability poses a challenge to monitoring CH4 fluxes with the eddy covariance (EC) technique, because this approach requires stationary signals from spatially homogeneous sources. Episodic outbursts of CH4 emissions, i.e. outgassing in the form of bubbles from oversaturated groundwater or surfacewater, are 5 particularly challenging to quantify. Such events typically last for only a few minutes, which is much shorter than the common averaging interval for eddy covariance (30 minutes). The steady state assumption is jeopardized, which potentially leads to a non-negligible bias in the CH4 flux. We tested and evaluated a flux calculation method based on wavelet analysis, which, in contrast to regular EC data processing, does not require steady-state conditions and is allowed to obtain fluxes over averaging periods as short as 1 minute. We demonstrate that the occurrence of extreme CH4 flux events 10 over the summer season followed a seasonal course with a maximum in early August, which is strongly correlated with the maximum soil temperature. Statistics on meteorological conditions before, during, and after the detected events revealed that it is atmospheric mixing that triggered such events rather than CH4 emission from the soil. By investigating individual events in more detail, we identified various mesoscale processes like gravity waves, low-level jets, weather fronts passing the site, and cold-air advection from a nearby mountain ridge as the dominating processes. Overall, our findings demonstrate that wavelet 15 analysis is a powerful method for resolving highly variable flux events on the order of minutes. It is a reliable reference to evaluate the quality of EC fluxes under non-steady-state conditions. Article in Journal/Newspaper Arctic permafrost Max Planck Society: MPG.PuRe Arctic Atmospheric Chemistry and Physics 19 6 4041 4059
institution Open Polar
collection Max Planck Society: MPG.PuRe
op_collection_id ftpubman
language unknown
description Methane (CH4) emissions from biogenic sources, such as Arctic permafrost wetlands, are associated with large uncertainties because of the high variability of fluxes in both space and time. This variability poses a challenge to monitoring CH4 fluxes with the eddy covariance (EC) technique, because this approach requires stationary signals from spatially homogeneous sources. Episodic outbursts of CH4 emissions, i.e. outgassing in the form of bubbles from oversaturated groundwater or surfacewater, are 5 particularly challenging to quantify. Such events typically last for only a few minutes, which is much shorter than the common averaging interval for eddy covariance (30 minutes). The steady state assumption is jeopardized, which potentially leads to a non-negligible bias in the CH4 flux. We tested and evaluated a flux calculation method based on wavelet analysis, which, in contrast to regular EC data processing, does not require steady-state conditions and is allowed to obtain fluxes over averaging periods as short as 1 minute. We demonstrate that the occurrence of extreme CH4 flux events 10 over the summer season followed a seasonal course with a maximum in early August, which is strongly correlated with the maximum soil temperature. Statistics on meteorological conditions before, during, and after the detected events revealed that it is atmospheric mixing that triggered such events rather than CH4 emission from the soil. By investigating individual events in more detail, we identified various mesoscale processes like gravity waves, low-level jets, weather fronts passing the site, and cold-air advection from a nearby mountain ridge as the dominating processes. Overall, our findings demonstrate that wavelet 15 analysis is a powerful method for resolving highly variable flux events on the order of minutes. It is a reliable reference to evaluate the quality of EC fluxes under non-steady-state conditions.
format Article in Journal/Newspaper
author Schaller, C.
Kittler, F.
Foken, T.
Göckede, M.
spellingShingle Schaller, C.
Kittler, F.
Foken, T.
Göckede, M.
Characterisation of short-term extreme methane fluxes related to non-turbulent mixing above an Arctic permafrost ecosystem
author_facet Schaller, C.
Kittler, F.
Foken, T.
Göckede, M.
author_sort Schaller, C.
title Characterisation of short-term extreme methane fluxes related to non-turbulent mixing above an Arctic permafrost ecosystem
title_short Characterisation of short-term extreme methane fluxes related to non-turbulent mixing above an Arctic permafrost ecosystem
title_full Characterisation of short-term extreme methane fluxes related to non-turbulent mixing above an Arctic permafrost ecosystem
title_fullStr Characterisation of short-term extreme methane fluxes related to non-turbulent mixing above an Arctic permafrost ecosystem
title_full_unstemmed Characterisation of short-term extreme methane fluxes related to non-turbulent mixing above an Arctic permafrost ecosystem
title_sort characterisation of short-term extreme methane fluxes related to non-turbulent mixing above an arctic permafrost ecosystem
publishDate 2019
url http://hdl.handle.net/21.11116/0000-0001-7877-3
http://hdl.handle.net/21.11116/0000-0003-4B78-3
geographic Arctic
geographic_facet Arctic
genre Arctic
permafrost
genre_facet Arctic
permafrost
op_source Atmospheric Chemistry and Physics
op_relation info:eu-repo/semantics/altIdentifier/doi/10.5194/acp-19-4041-2019
http://hdl.handle.net/21.11116/0000-0001-7877-3
http://hdl.handle.net/21.11116/0000-0003-4B78-3
op_rights info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by/4.0/
op_doi https://doi.org/10.5194/acp-19-4041-2019
container_title Atmospheric Chemistry and Physics
container_volume 19
container_issue 6
container_start_page 4041
op_container_end_page 4059
_version_ 1774714835362119680