Thermal fracturing on comets : Applications to 67P/Churyumov-Gerasimenko

We simulate the stresses induced by temperature changes in a putative hard layer near the surface of comet 67P/Churyumov-Gerasimenko with a thermo-viscoelastic model. Such a layer could be formed by the recondensation or sintering of water ice (and dust grains), as suggested by laboratory experiment...

Full description

Bibliographic Details
Published in:Astronomy & Astrophysics
Main Authors: Attree, N., Groussin, O., Jorda, L., Rodionov, S., Auger, A., Thomas, N., Brouet, Y., Poch, O., Kührt, E., Knapmeyer, M., Preusker, F., Scholten, F., Knollenberg, J., Hviid, S., Hartogh, P.
Format: Article in Journal/Newspaper
Language:English
Published: 2018
Subjects:
Ice
Online Access:http://hdl.handle.net/21.11116/0000-0001-1BCB-D
id ftpubman:oai:pure.mpg.de:item_2574138
record_format openpolar
spelling ftpubman:oai:pure.mpg.de:item_2574138 2023-08-27T04:09:57+02:00 Thermal fracturing on comets : Applications to 67P/Churyumov-Gerasimenko Attree, N. Groussin, O. Jorda, L. Rodionov, S. Auger, A. Thomas, N. Brouet, Y. Poch, O. Kührt, E. Knapmeyer, M. Preusker, F. Scholten, F. Knollenberg, J. Hviid, S. Hartogh, P. 2018 http://hdl.handle.net/21.11116/0000-0001-1BCB-D eng eng info:eu-repo/semantics/altIdentifier/doi/10.1051/0004-6361/201731937 http://hdl.handle.net/21.11116/0000-0001-1BCB-D Astronomy and Astrophysics ROSETTA: MIRO info:eu-repo/semantics/article 2018 ftpubman https://doi.org/10.1051/0004-6361/201731937 2023-08-02T00:22:00Z We simulate the stresses induced by temperature changes in a putative hard layer near the surface of comet 67P/Churyumov-Gerasimenko with a thermo-viscoelastic model. Such a layer could be formed by the recondensation or sintering of water ice (and dust grains), as suggested by laboratory experiments and computer simulations, and would explain the high compressive strength encountered by experiments on board the Philae lander. Changes in temperature from seasonal insolation variation penetrate into the comet’s surface to depths controlled by the thermal inertia, causing the material to expand and contract. Modelling this with a Maxwellian viscoelastic response on a spherical nucleus, we show that a hard, icy layer with similar properties to Martian permafrost will experience high stresses: up to tens of MPa, which exceed its material strength (a few MPa), down to depths of centimetres to a metre. The stress distribution with latitude is confirmed qualitatively when taking into account the comet’s complex shape but neglecting thermal inertia. Stress is found to be comparable to the material strength everywhere for sufficient thermal inertia (≳50 J m −2 K −1 s −1∕2 ) and ice content (≳45% at the equator). In this case, stresses penetrate to a typical depth of ~0.25 m, consistent with the detection of metre-scale thermal contraction crack polygons all over the comet. Thermal fracturing may be an important erosion process on cometary surfaces which breaks down material and weakens cliffs. Article in Journal/Newspaper Ice permafrost Max Planck Society: MPG.PuRe Astronomy & Astrophysics 610 A76
institution Open Polar
collection Max Planck Society: MPG.PuRe
op_collection_id ftpubman
language English
topic ROSETTA: MIRO
spellingShingle ROSETTA: MIRO
Attree, N.
Groussin, O.
Jorda, L.
Rodionov, S.
Auger, A.
Thomas, N.
Brouet, Y.
Poch, O.
Kührt, E.
Knapmeyer, M.
Preusker, F.
Scholten, F.
Knollenberg, J.
Hviid, S.
Hartogh, P.
Thermal fracturing on comets : Applications to 67P/Churyumov-Gerasimenko
topic_facet ROSETTA: MIRO
description We simulate the stresses induced by temperature changes in a putative hard layer near the surface of comet 67P/Churyumov-Gerasimenko with a thermo-viscoelastic model. Such a layer could be formed by the recondensation or sintering of water ice (and dust grains), as suggested by laboratory experiments and computer simulations, and would explain the high compressive strength encountered by experiments on board the Philae lander. Changes in temperature from seasonal insolation variation penetrate into the comet’s surface to depths controlled by the thermal inertia, causing the material to expand and contract. Modelling this with a Maxwellian viscoelastic response on a spherical nucleus, we show that a hard, icy layer with similar properties to Martian permafrost will experience high stresses: up to tens of MPa, which exceed its material strength (a few MPa), down to depths of centimetres to a metre. The stress distribution with latitude is confirmed qualitatively when taking into account the comet’s complex shape but neglecting thermal inertia. Stress is found to be comparable to the material strength everywhere for sufficient thermal inertia (≳50 J m −2 K −1 s −1∕2 ) and ice content (≳45% at the equator). In this case, stresses penetrate to a typical depth of ~0.25 m, consistent with the detection of metre-scale thermal contraction crack polygons all over the comet. Thermal fracturing may be an important erosion process on cometary surfaces which breaks down material and weakens cliffs.
format Article in Journal/Newspaper
author Attree, N.
Groussin, O.
Jorda, L.
Rodionov, S.
Auger, A.
Thomas, N.
Brouet, Y.
Poch, O.
Kührt, E.
Knapmeyer, M.
Preusker, F.
Scholten, F.
Knollenberg, J.
Hviid, S.
Hartogh, P.
author_facet Attree, N.
Groussin, O.
Jorda, L.
Rodionov, S.
Auger, A.
Thomas, N.
Brouet, Y.
Poch, O.
Kührt, E.
Knapmeyer, M.
Preusker, F.
Scholten, F.
Knollenberg, J.
Hviid, S.
Hartogh, P.
author_sort Attree, N.
title Thermal fracturing on comets : Applications to 67P/Churyumov-Gerasimenko
title_short Thermal fracturing on comets : Applications to 67P/Churyumov-Gerasimenko
title_full Thermal fracturing on comets : Applications to 67P/Churyumov-Gerasimenko
title_fullStr Thermal fracturing on comets : Applications to 67P/Churyumov-Gerasimenko
title_full_unstemmed Thermal fracturing on comets : Applications to 67P/Churyumov-Gerasimenko
title_sort thermal fracturing on comets : applications to 67p/churyumov-gerasimenko
publishDate 2018
url http://hdl.handle.net/21.11116/0000-0001-1BCB-D
genre Ice
permafrost
genre_facet Ice
permafrost
op_source Astronomy and Astrophysics
op_relation info:eu-repo/semantics/altIdentifier/doi/10.1051/0004-6361/201731937
http://hdl.handle.net/21.11116/0000-0001-1BCB-D
op_doi https://doi.org/10.1051/0004-6361/201731937
container_title Astronomy & Astrophysics
container_volume 610
container_start_page A76
_version_ 1775351634497372160