Particulate trimethylamine in the summertime Canadian high Arctic lower troposphere

Size-resolved and vertical profile measurements of single particle chemical composition (sampling altitude range 50–3000 m) were conducted in July 2014 in the Canadian high Arctic during the aircraft-based measurement campaign NETCARE 2014. We deployed the single particle laser ablation aerosol mass...

Full description

Bibliographic Details
Main Authors: Köllner, F., Schneider, J., Willis, M., Klimach, T., Helleis, F., Bozem, H., Kunkel, D., Hoor, P., Burkart, J., Leaitch, W., Aliabadi, A., Abbatt, J., Herber, B., Borrmann, S.
Format: Report
Language:English
Published: 2017
Subjects:
Online Access:http://hdl.handle.net/11858/00-001M-0000-002D-ADF6-A
id ftpubman:oai:pure.mpg.de:item_2467903
record_format openpolar
spelling ftpubman:oai:pure.mpg.de:item_2467903 2024-09-09T19:18:46+00:00 Particulate trimethylamine in the summertime Canadian high Arctic lower troposphere Köllner, F. Schneider, J. Willis, M. Klimach, T. Helleis, F. Bozem, H. Kunkel, D. Hoor, P. Burkart, J. Leaitch, W. Aliabadi, A. Abbatt, J. Herber, B. Borrmann, S. 2017 http://hdl.handle.net/11858/00-001M-0000-002D-ADF6-A eng eng info:eu-repo/semantics/altIdentifier/doi/10.5194/acp-2017-505 http://hdl.handle.net/11858/00-001M-0000-002D-ADF6-A Atmospheric Chemistry and Physics Discussions info:eu-repo/semantics/workingPaper 2017 ftpubman https://doi.org/10.5194/acp-2017-505 2024-07-31T09:31:28Z Size-resolved and vertical profile measurements of single particle chemical composition (sampling altitude range 50–3000 m) were conducted in July 2014 in the Canadian high Arctic during the aircraft-based measurement campaign NETCARE 2014. We deployed the single particle laser ablation aerosol mass spectrometer ALABAMA (vacuum aerodynamic diameter range approximately 200–1000 nm) to identify different particle types and their mixing states. On basis of the single particle analysis, we found that a significant fraction (23 %) of all analyzed particles (in total: 7412) contained trimethylamine (TMA). The identification of TMA in ambient mass spectra was confirmed by laboratory measurements. From the maximum occurrence of particulate TMA in the Arctic boundary layer and the higher abundance of smaller TMA-containing particles (maximum in the size distribution at 300 nm), we conclude that the TMA component of these particles resulted from emissions within the Arctic boundary layer. Air mass history according to FLEXPART backward simulations and associated wind data give evidence of a marine-biogenic influence on particulate TMA. The marine influence on particle chemical composition in the summertime Arctic is further demonstrated by the existence of larger sodium and chloride ("Na/Cl-") containing particles which are mainly abundant in the boundary layer. Some of these sea spray particles were internally mixed with carbohydrates (e.g., cellulose) which likely originated from a sea surface microlayer enriched with microorganisms and organic compounds. The external mix of sea spray particles and TMA-containing particles suggests the latter result from secondary conversion of precursor gases from marine inner-Arctic sources. In contrast to TMA- and Na/Cl-containing aerosol types, particles with biomass-burning markers (such as levoglucosan) showed a higher fraction at higher altitudes, thereby indicating long-range transport as their source. Our measurements highlight the importance of natural, marine inner-Arctic ... Report Arctic Max Planck Society: MPG.PuRe Arctic Alabama
institution Open Polar
collection Max Planck Society: MPG.PuRe
op_collection_id ftpubman
language English
description Size-resolved and vertical profile measurements of single particle chemical composition (sampling altitude range 50–3000 m) were conducted in July 2014 in the Canadian high Arctic during the aircraft-based measurement campaign NETCARE 2014. We deployed the single particle laser ablation aerosol mass spectrometer ALABAMA (vacuum aerodynamic diameter range approximately 200–1000 nm) to identify different particle types and their mixing states. On basis of the single particle analysis, we found that a significant fraction (23 %) of all analyzed particles (in total: 7412) contained trimethylamine (TMA). The identification of TMA in ambient mass spectra was confirmed by laboratory measurements. From the maximum occurrence of particulate TMA in the Arctic boundary layer and the higher abundance of smaller TMA-containing particles (maximum in the size distribution at 300 nm), we conclude that the TMA component of these particles resulted from emissions within the Arctic boundary layer. Air mass history according to FLEXPART backward simulations and associated wind data give evidence of a marine-biogenic influence on particulate TMA. The marine influence on particle chemical composition in the summertime Arctic is further demonstrated by the existence of larger sodium and chloride ("Na/Cl-") containing particles which are mainly abundant in the boundary layer. Some of these sea spray particles were internally mixed with carbohydrates (e.g., cellulose) which likely originated from a sea surface microlayer enriched with microorganisms and organic compounds. The external mix of sea spray particles and TMA-containing particles suggests the latter result from secondary conversion of precursor gases from marine inner-Arctic sources. In contrast to TMA- and Na/Cl-containing aerosol types, particles with biomass-burning markers (such as levoglucosan) showed a higher fraction at higher altitudes, thereby indicating long-range transport as their source. Our measurements highlight the importance of natural, marine inner-Arctic ...
format Report
author Köllner, F.
Schneider, J.
Willis, M.
Klimach, T.
Helleis, F.
Bozem, H.
Kunkel, D.
Hoor, P.
Burkart, J.
Leaitch, W.
Aliabadi, A.
Abbatt, J.
Herber, B.
Borrmann, S.
spellingShingle Köllner, F.
Schneider, J.
Willis, M.
Klimach, T.
Helleis, F.
Bozem, H.
Kunkel, D.
Hoor, P.
Burkart, J.
Leaitch, W.
Aliabadi, A.
Abbatt, J.
Herber, B.
Borrmann, S.
Particulate trimethylamine in the summertime Canadian high Arctic lower troposphere
author_facet Köllner, F.
Schneider, J.
Willis, M.
Klimach, T.
Helleis, F.
Bozem, H.
Kunkel, D.
Hoor, P.
Burkart, J.
Leaitch, W.
Aliabadi, A.
Abbatt, J.
Herber, B.
Borrmann, S.
author_sort Köllner, F.
title Particulate trimethylamine in the summertime Canadian high Arctic lower troposphere
title_short Particulate trimethylamine in the summertime Canadian high Arctic lower troposphere
title_full Particulate trimethylamine in the summertime Canadian high Arctic lower troposphere
title_fullStr Particulate trimethylamine in the summertime Canadian high Arctic lower troposphere
title_full_unstemmed Particulate trimethylamine in the summertime Canadian high Arctic lower troposphere
title_sort particulate trimethylamine in the summertime canadian high arctic lower troposphere
publishDate 2017
url http://hdl.handle.net/11858/00-001M-0000-002D-ADF6-A
geographic Arctic
Alabama
geographic_facet Arctic
Alabama
genre Arctic
genre_facet Arctic
op_source Atmospheric Chemistry and Physics Discussions
op_relation info:eu-repo/semantics/altIdentifier/doi/10.5194/acp-2017-505
http://hdl.handle.net/11858/00-001M-0000-002D-ADF6-A
op_doi https://doi.org/10.5194/acp-2017-505
_version_ 1809758846939299840