Observed Arctic sea-ice loss directly follows anthropogenic CO2 emission

Arctic sea ice is retreating rapidly, raising prospects of a future ice-free Arctic Ocean during summer. Since climate-model simulations of the sea-ice loss differ substantially, we here use a robust linear relationship between monthly-mean September sea-ice area and cumulative CO2 emissions to infe...

Full description

Bibliographic Details
Published in:Science
Main Authors: Notz, D., Stroeve, J.
Format: Article in Journal/Newspaper
Language:English
Published: 2016
Subjects:
Online Access:http://hdl.handle.net/11858/00-001M-0000-002B-B166-0
http://hdl.handle.net/11858/00-001M-0000-002B-B16F-D
http://hdl.handle.net/21.11116/0000-0005-767D-B
Description
Summary:Arctic sea ice is retreating rapidly, raising prospects of a future ice-free Arctic Ocean during summer. Since climate-model simulations of the sea-ice loss differ substantially, we here use a robust linear relationship between monthly-mean September sea-ice area and cumulative CO2 emissions to infer the future evolution of Arctic summer sea ice directly from the observational record. The observed linear relationship implies a sustained loss of 3 ± 0.3 m2 of September sea-ice area per metric ton of CO2 emission. Based on this sensitivity, Arctic sea-ice will be lost throughout September for an additional 1000 Gt of CO2 emissions. Most models show a lower sensitivity, which is possibly linked to an underestimation of the modeled increase in incoming longwave radiation and of the modeled Transient Climate Response.