Microphysical properties of synoptic-scale polar stratospheric clouds: in situ measurements of unexpectedly large HNO 3 -containing particles in the Arctic vortex

In January 2010 and December 2011, synopticscale polar stratospheric cloud (PSC) fields were probed during seven flights of the high-altitude research aircraft M-55 Geophysica within the RECONCILE (Reconciliation of essential process parameters for an enhanced predictability of Arctic stratospheric...

Full description

Bibliographic Details
Published in:Atmospheric Chemistry and Physics
Main Authors: Molleker, S., Borrmann, S., Schlager, H., Luo, B., Frey, W., Klingebiel, M., Weigel, R., Ebert, M., Mitev, V., Matthey, R., Woiwode, W., Oelhaf, H., Dörnbrack, A., Stratmann, G., Grooß, J., Günther, G., Vogel, B., Müller, R., Krämer, M., Meyer, J., Cairo, F.
Format: Article in Journal/Newspaper
Language:unknown
Published: 2014
Subjects:
Online Access:http://hdl.handle.net/11858/00-001M-0000-0024-B24B-5
id ftpubman:oai:pure.mpg.de:item_2084374
record_format openpolar
spelling ftpubman:oai:pure.mpg.de:item_2084374 2023-08-20T04:04:13+02:00 Microphysical properties of synoptic-scale polar stratospheric clouds: in situ measurements of unexpectedly large HNO 3 -containing particles in the Arctic vortex Molleker, S. Borrmann, S. Schlager, H. Luo, B. Frey, W. Klingebiel, M. Weigel, R. Ebert, M. Mitev, V. Matthey, R. Woiwode, W. Oelhaf, H. Dörnbrack, A. Stratmann, G. Grooß, J. Günther, G. Vogel, B. Müller, R. Krämer, M. Meyer, J. Cairo, F. 2014 http://hdl.handle.net/11858/00-001M-0000-0024-B24B-5 unknown info:eu-repo/semantics/altIdentifier/doi/10.5194/acp-14-10785-2014 http://hdl.handle.net/11858/00-001M-0000-0024-B24B-5 Atmospheric Chemistry and Physics info:eu-repo/semantics/article 2014 ftpubman https://doi.org/10.5194/acp-14-10785-2014 2023-08-01T20:39:10Z In January 2010 and December 2011, synopticscale polar stratospheric cloud (PSC) fields were probed during seven flights of the high-altitude research aircraft M-55 Geophysica within the RECONCILE (Reconciliation of essential process parameters for an enhanced predictability of Arctic stratospheric ozone loss and its climate interaction) and the ESSenCe (ESSenCe: ESA Sounder Campaign) projects. Particle size distributions in a diameter range between 0.46 and 40 mu m were recorded by four different optical in situ instruments. Three of these particle instruments are based on the detection of forward-scattered light by single particles. The fourth instrument is a grayscale optical array imaging probe. Optical particle diameters of up to 35 mu m were detected with particle number densities and total particle volumes exceeding previous Arctic measurements. Also, gas-phase and particle-bound NOy was measured, as well as water vapor concentrations. The optical characteristics of the clouds were measured by the remote sensing lidar MAL (Miniature Aerosol Lidar) and by the in situ backscatter sonde MAS (Multiwavelength Aerosol Scatterometer), showing the synoptic scale of the encountered PSCs. The particle mode below 2 mu m in size diameter has been identified as supercooled ternary solution (STS) droplets. The PSC particles in the size range above 2 mu m in diameter are considered to consist of nitric acid hydrates, and the particles' high HNO3 content was confirmed by the NOy instrument. Assuming a particle composition of nitric acid trihydrate (NAT), the optically measured size distributions result in particle-phase HNO3 mixing ratios exceeding available stratospheric values. Therefore the measurement uncertainties concerning probable overestimations of measured particle sizes and volumes are discussed in detail. We hypothesize that either a strong asphericity or an alternate particle composition (e.g., water ice coated with NAT) could explain our observations. In particular, with respect to the denitrification by ... Article in Journal/Newspaper Arctic Max Planck Society: MPG.PuRe Arctic Atmospheric Chemistry and Physics 14 19 10785 10801
institution Open Polar
collection Max Planck Society: MPG.PuRe
op_collection_id ftpubman
language unknown
description In January 2010 and December 2011, synopticscale polar stratospheric cloud (PSC) fields were probed during seven flights of the high-altitude research aircraft M-55 Geophysica within the RECONCILE (Reconciliation of essential process parameters for an enhanced predictability of Arctic stratospheric ozone loss and its climate interaction) and the ESSenCe (ESSenCe: ESA Sounder Campaign) projects. Particle size distributions in a diameter range between 0.46 and 40 mu m were recorded by four different optical in situ instruments. Three of these particle instruments are based on the detection of forward-scattered light by single particles. The fourth instrument is a grayscale optical array imaging probe. Optical particle diameters of up to 35 mu m were detected with particle number densities and total particle volumes exceeding previous Arctic measurements. Also, gas-phase and particle-bound NOy was measured, as well as water vapor concentrations. The optical characteristics of the clouds were measured by the remote sensing lidar MAL (Miniature Aerosol Lidar) and by the in situ backscatter sonde MAS (Multiwavelength Aerosol Scatterometer), showing the synoptic scale of the encountered PSCs. The particle mode below 2 mu m in size diameter has been identified as supercooled ternary solution (STS) droplets. The PSC particles in the size range above 2 mu m in diameter are considered to consist of nitric acid hydrates, and the particles' high HNO3 content was confirmed by the NOy instrument. Assuming a particle composition of nitric acid trihydrate (NAT), the optically measured size distributions result in particle-phase HNO3 mixing ratios exceeding available stratospheric values. Therefore the measurement uncertainties concerning probable overestimations of measured particle sizes and volumes are discussed in detail. We hypothesize that either a strong asphericity or an alternate particle composition (e.g., water ice coated with NAT) could explain our observations. In particular, with respect to the denitrification by ...
format Article in Journal/Newspaper
author Molleker, S.
Borrmann, S.
Schlager, H.
Luo, B.
Frey, W.
Klingebiel, M.
Weigel, R.
Ebert, M.
Mitev, V.
Matthey, R.
Woiwode, W.
Oelhaf, H.
Dörnbrack, A.
Stratmann, G.
Grooß, J.
Günther, G.
Vogel, B.
Müller, R.
Krämer, M.
Meyer, J.
Cairo, F.
spellingShingle Molleker, S.
Borrmann, S.
Schlager, H.
Luo, B.
Frey, W.
Klingebiel, M.
Weigel, R.
Ebert, M.
Mitev, V.
Matthey, R.
Woiwode, W.
Oelhaf, H.
Dörnbrack, A.
Stratmann, G.
Grooß, J.
Günther, G.
Vogel, B.
Müller, R.
Krämer, M.
Meyer, J.
Cairo, F.
Microphysical properties of synoptic-scale polar stratospheric clouds: in situ measurements of unexpectedly large HNO 3 -containing particles in the Arctic vortex
author_facet Molleker, S.
Borrmann, S.
Schlager, H.
Luo, B.
Frey, W.
Klingebiel, M.
Weigel, R.
Ebert, M.
Mitev, V.
Matthey, R.
Woiwode, W.
Oelhaf, H.
Dörnbrack, A.
Stratmann, G.
Grooß, J.
Günther, G.
Vogel, B.
Müller, R.
Krämer, M.
Meyer, J.
Cairo, F.
author_sort Molleker, S.
title Microphysical properties of synoptic-scale polar stratospheric clouds: in situ measurements of unexpectedly large HNO 3 -containing particles in the Arctic vortex
title_short Microphysical properties of synoptic-scale polar stratospheric clouds: in situ measurements of unexpectedly large HNO 3 -containing particles in the Arctic vortex
title_full Microphysical properties of synoptic-scale polar stratospheric clouds: in situ measurements of unexpectedly large HNO 3 -containing particles in the Arctic vortex
title_fullStr Microphysical properties of synoptic-scale polar stratospheric clouds: in situ measurements of unexpectedly large HNO 3 -containing particles in the Arctic vortex
title_full_unstemmed Microphysical properties of synoptic-scale polar stratospheric clouds: in situ measurements of unexpectedly large HNO 3 -containing particles in the Arctic vortex
title_sort microphysical properties of synoptic-scale polar stratospheric clouds: in situ measurements of unexpectedly large hno 3 -containing particles in the arctic vortex
publishDate 2014
url http://hdl.handle.net/11858/00-001M-0000-0024-B24B-5
geographic Arctic
geographic_facet Arctic
genre Arctic
genre_facet Arctic
op_source Atmospheric Chemistry and Physics
op_relation info:eu-repo/semantics/altIdentifier/doi/10.5194/acp-14-10785-2014
http://hdl.handle.net/11858/00-001M-0000-0024-B24B-5
op_doi https://doi.org/10.5194/acp-14-10785-2014
container_title Atmospheric Chemistry and Physics
container_volume 14
container_issue 19
container_start_page 10785
op_container_end_page 10801
_version_ 1774714631579762688