Behavior of double-hemisphere thermohaline flows in a single basin

A coarse resolution, three-dimensional numerical model is used to study how external parameters control the existence and strength of equatorially asymmetric thermohaline overturning in a large-scale, rotating ocean basin. Initially, the meridional surface density gradient is directly set to be larg...

Full description

Bibliographic Details
Main Authors: Klinger, B., Marotzke, J.
Format: Article in Journal/Newspaper
Language:English
Published: 1999
Subjects:
Online Access:http://hdl.handle.net/11858/00-001M-0000-000E-7332-E
http://hdl.handle.net/11858/00-001M-0000-000E-7DB0-D
id ftpubman:oai:pure.mpg.de:item_1593195
record_format openpolar
spelling ftpubman:oai:pure.mpg.de:item_1593195 2023-08-27T04:05:59+02:00 Behavior of double-hemisphere thermohaline flows in a single basin Klinger, B. Marotzke, J. 1999 application/pdf http://hdl.handle.net/11858/00-001M-0000-000E-7332-E http://hdl.handle.net/11858/00-001M-0000-000E-7DB0-D eng eng info:eu-repo/semantics/altIdentifier/doi/10.1175/1520-0485(1999)029<0382:BODHTF>2.0.CO;2 http://hdl.handle.net/11858/00-001M-0000-000E-7332-E http://hdl.handle.net/11858/00-001M-0000-000E-7DB0-D info:eu-repo/semantics/openAccess Journal of Physical Oceanography info:eu-repo/semantics/article 1999 ftpubman https://doi.org/10.1175/1520-0485(1999)029<0382:BODHTF>2.0.CO;2 2023-08-02T01:15:04Z A coarse resolution, three-dimensional numerical model is used to study how external parameters control the existence and strength of equatorially asymmetric thermohaline overturning in a large-scale, rotating ocean basin. Initially, the meridional surface density gradient is directly set to be larger in a "dominant" hemisphere than in a "subordinate" hemisphere. The two-hemisphere system has a broader thermocline and weaker upwelling than the same model with the dominant hemisphere only. This behavior is in accord with classical scaling arguments, providing that the continuity equation is employed, rather than the linear vorticity equation. The dominant overturning cell, analogous to North Atlantic Deep Water formation, is primarily controlled by the surface density contrast in the dominant hemisphere, which in turn is largely set by temperature. Consequently, in experiments with mixed boundary conditions, the dominant cell strength is relatively insensitive to the magnitude Q(s) of the salinity forcing. However, a, strongly influences subordinate hemisphere properties, including the volume transport of a shallow overturning cell and the meridional extent of a tongue of low-salinity intermediate water reminiscent of Antarctic Intermediate Water. The minimum Q(s) is identified for which the steady, asymmetric how is stable; below this value, a steady, equatorially symmetric, temperature-dominated overturning occurs. For high salt flux, the asymmetric circulation becomes oscillatory and eventually gives way to an unsteady, symmetric, salt-dominated overturning. For given boundary conditions, it is possible to have at least three different asymmetric states, with significantly different large-scale properties. An expression for the meridional salt transport allows one to roughly predict the surface salinity and density profile and stability of the asymmetric state as a function of Q(s) and other external parameters. Article in Journal/Newspaper Antarc* Antarctic North Atlantic Deep Water North Atlantic Max Planck Society: MPG.PuRe Antarctic
institution Open Polar
collection Max Planck Society: MPG.PuRe
op_collection_id ftpubman
language English
description A coarse resolution, three-dimensional numerical model is used to study how external parameters control the existence and strength of equatorially asymmetric thermohaline overturning in a large-scale, rotating ocean basin. Initially, the meridional surface density gradient is directly set to be larger in a "dominant" hemisphere than in a "subordinate" hemisphere. The two-hemisphere system has a broader thermocline and weaker upwelling than the same model with the dominant hemisphere only. This behavior is in accord with classical scaling arguments, providing that the continuity equation is employed, rather than the linear vorticity equation. The dominant overturning cell, analogous to North Atlantic Deep Water formation, is primarily controlled by the surface density contrast in the dominant hemisphere, which in turn is largely set by temperature. Consequently, in experiments with mixed boundary conditions, the dominant cell strength is relatively insensitive to the magnitude Q(s) of the salinity forcing. However, a, strongly influences subordinate hemisphere properties, including the volume transport of a shallow overturning cell and the meridional extent of a tongue of low-salinity intermediate water reminiscent of Antarctic Intermediate Water. The minimum Q(s) is identified for which the steady, asymmetric how is stable; below this value, a steady, equatorially symmetric, temperature-dominated overturning occurs. For high salt flux, the asymmetric circulation becomes oscillatory and eventually gives way to an unsteady, symmetric, salt-dominated overturning. For given boundary conditions, it is possible to have at least three different asymmetric states, with significantly different large-scale properties. An expression for the meridional salt transport allows one to roughly predict the surface salinity and density profile and stability of the asymmetric state as a function of Q(s) and other external parameters.
format Article in Journal/Newspaper
author Klinger, B.
Marotzke, J.
spellingShingle Klinger, B.
Marotzke, J.
Behavior of double-hemisphere thermohaline flows in a single basin
author_facet Klinger, B.
Marotzke, J.
author_sort Klinger, B.
title Behavior of double-hemisphere thermohaline flows in a single basin
title_short Behavior of double-hemisphere thermohaline flows in a single basin
title_full Behavior of double-hemisphere thermohaline flows in a single basin
title_fullStr Behavior of double-hemisphere thermohaline flows in a single basin
title_full_unstemmed Behavior of double-hemisphere thermohaline flows in a single basin
title_sort behavior of double-hemisphere thermohaline flows in a single basin
publishDate 1999
url http://hdl.handle.net/11858/00-001M-0000-000E-7332-E
http://hdl.handle.net/11858/00-001M-0000-000E-7DB0-D
geographic Antarctic
geographic_facet Antarctic
genre Antarc*
Antarctic
North Atlantic Deep Water
North Atlantic
genre_facet Antarc*
Antarctic
North Atlantic Deep Water
North Atlantic
op_source Journal of Physical Oceanography
op_relation info:eu-repo/semantics/altIdentifier/doi/10.1175/1520-0485(1999)029<0382:BODHTF>2.0.CO;2
http://hdl.handle.net/11858/00-001M-0000-000E-7332-E
http://hdl.handle.net/11858/00-001M-0000-000E-7DB0-D
op_rights info:eu-repo/semantics/openAccess
op_doi https://doi.org/10.1175/1520-0485(1999)029<0382:BODHTF>2.0.CO;2
_version_ 1775346714900692992