SEISMIC STRUCTURE OF THE EUROPEAN CRUST AND UPPER MANTLE BASED ON ADJOINT TOMOGRAPHY

We use adjoint tomography to estimate three-dimensional variations in seismic parameters within the crust and upper mantle beneath Europe and the North Atlantic Ocean. Spectral-element and adjoint methods are used to numerically calculate synthetic seismograms and sensitivity kernels in three-dimens...

Full description

Bibliographic Details
Main Author: Zhu, Hejun
Other Authors: Tromp, Jeroen, Geosciences Department
Format: Doctoral or Postdoctoral Thesis
Language:English
Published: Princeton, NJ : Princeton University 2013
Subjects:
Online Access:http://arks.princeton.edu/ark:/88435/dsp01df65v798b
Description
Summary:We use adjoint tomography to estimate three-dimensional variations in seismic parameters within the crust and upper mantle beneath Europe and the North Atlantic Ocean. Spectral-element and adjoint methods are used to numerically calculate synthetic seismograms and sensitivity kernels in three-dimensional Earth models. Combined with gradient- based optimization algorithms, e.g., preconditioned conjugate-gradient and L-BFGS methods, we iteratively update seismic models of Earth's interior. A three-stage inversion strategy is designed to estimate variations in elastic wavespeeds, anelastic attenuation and radial & azimuthal anisotropy. In stage one, frequency-dependent phase differences between observed and simulated seismograms are used to determine a new radially anisotropic wavespeed model for the European crust and upper mantle, namely EU30. Long-wavelength structures in EU30 compare favorably with previous body- and surface-wave tomographic models. Some hitherto unidentified features naturally emerge from the smooth starting model. In stage two, frequency-dependent amplitude differences combined with remaining phase anomalies are used to simultaneously constrain elastic and anelastic structures. A new anelastic model, named EU50, is constructed in this stage. We observe several notable features, such as enhanced attenuation within the mantle transition zone beneath the North Atlantic Ocean. In the first two stages, long-period surface waves and short-period body waves in three-component seismograms are combined to simultaneously constrain shallow and deep structures. In stage three, frequency-dependent phase and amplitude anomalies of three-component surface waves are used to construct a radially and azimuthally anisotropic model EU60. We find that the direction of the fast axis is closely tied to the tectonic evolution in this region, such as extension along the North Atlantic Ridge, trench retreat in the Mediterranean, and counterclockwise rotation of the Anatolian Plate. Radial peak-to- peak anisotropic ...