Antarctic sub-shelf melt rates via PICO
Ocean-induced melting below ice shelves is one of the dominant drivers for mass loss from the Antarctic Ice Sheet at present. An appropriate representation of subshelf melt rates is therefore essential for model simulations of marine-based ice sheet evolution. Continental-scale ice sheet models ofte...
Published in: | The Cryosphere |
---|---|
Main Authors: | , , , , |
Format: | Article in Journal/Newspaper |
Language: | unknown |
Published: |
2018
|
Subjects: | |
Online Access: | https://publications.pik-potsdam.de/pubman/item/item_22541 https://publications.pik-potsdam.de/pubman/item/item_22541_1/component/file_22542/8141oa.pdf |
id |
ftpotsdamik:oai:publications.pik-potsdam.de:item_22541 |
---|---|
record_format |
openpolar |
spelling |
ftpotsdamik:oai:publications.pik-potsdam.de:item_22541 2024-10-06T13:42:05+00:00 Antarctic sub-shelf melt rates via PICO Reese, R. Albrecht, T. Mengel, M. Asay-Davis, X. Winkelmann, R. 2018 application/pdf https://publications.pik-potsdam.de/pubman/item/item_22541 https://publications.pik-potsdam.de/pubman/item/item_22541_1/component/file_22542/8141oa.pdf unknown info:eu-repo/semantics/altIdentifier/doi/10.5194/tc-12-1969-2018 https://publications.pik-potsdam.de/pubman/item/item_22541 https://publications.pik-potsdam.de/pubman/item/item_22541_1/component/file_22542/8141oa.pdf info:eu-repo/semantics/openAccess The Cryosphere info:eu-repo/semantics/article 2018 ftpotsdamik https://doi.org/10.5194/tc-12-1969-2018 2024-09-11T03:51:11Z Ocean-induced melting below ice shelves is one of the dominant drivers for mass loss from the Antarctic Ice Sheet at present. An appropriate representation of subshelf melt rates is therefore essential for model simulations of marine-based ice sheet evolution. Continental-scale ice sheet models often rely on simple melt-parameterizations, in particular for long-term simulations, when fully coupled ice–ocean interaction becomes computationally too expensive. Such parameterizations can account for the influence of the local depth of the ice-shelf draft or its slope on melting. However, they do not capture the effect of ocean circulation underneath the ice shelf. Here we present the Potsdam Ice-shelf Cavity mOdel (PICO), which simulates the vertical overturning circulation in ice-shelf cavities and thus enables the computation of sub-shelf melt rates consistent with this circulation. PICO is based on an ocean box model that coarsely resolves ice shelf cavities and uses a boundary layer melt formulation. We implement it as a module of the Parallel Ice Sheet Model (PISM) and evaluate its performance under present-day conditions of the Southern Ocean. We identify a set of parameters that yield two-dimensional melt rate fields that qualitatively reproduce the typical pattern of comparably high melting near the grounding line and lower melting or refreezing towards the calving front. PICO captures the wide range of melt rates observed for Antarctic ice shelves, with an average of about 0.1 m a−1 for cold sub-shelf cavities, for example, underneath Ross or Ronne ice shelves, to 16 m a−1 for warm cavities such as in the Amundsen Sea region. This makes PICO a computationally feasible and more physical alternative to melt parameterizations purely based on ice draft geometry. Article in Journal/Newspaper Amundsen Sea Antarc* Antarctic Ice Sheet Ice Shelf Ice Shelves Southern Ocean The Cryosphere Publication Database PIK (Potsdam Institute for Climate Impact Research) Antarctic Southern Ocean The Antarctic Amundsen Sea The Cryosphere 12 6 1969 1985 |
institution |
Open Polar |
collection |
Publication Database PIK (Potsdam Institute for Climate Impact Research) |
op_collection_id |
ftpotsdamik |
language |
unknown |
description |
Ocean-induced melting below ice shelves is one of the dominant drivers for mass loss from the Antarctic Ice Sheet at present. An appropriate representation of subshelf melt rates is therefore essential for model simulations of marine-based ice sheet evolution. Continental-scale ice sheet models often rely on simple melt-parameterizations, in particular for long-term simulations, when fully coupled ice–ocean interaction becomes computationally too expensive. Such parameterizations can account for the influence of the local depth of the ice-shelf draft or its slope on melting. However, they do not capture the effect of ocean circulation underneath the ice shelf. Here we present the Potsdam Ice-shelf Cavity mOdel (PICO), which simulates the vertical overturning circulation in ice-shelf cavities and thus enables the computation of sub-shelf melt rates consistent with this circulation. PICO is based on an ocean box model that coarsely resolves ice shelf cavities and uses a boundary layer melt formulation. We implement it as a module of the Parallel Ice Sheet Model (PISM) and evaluate its performance under present-day conditions of the Southern Ocean. We identify a set of parameters that yield two-dimensional melt rate fields that qualitatively reproduce the typical pattern of comparably high melting near the grounding line and lower melting or refreezing towards the calving front. PICO captures the wide range of melt rates observed for Antarctic ice shelves, with an average of about 0.1 m a−1 for cold sub-shelf cavities, for example, underneath Ross or Ronne ice shelves, to 16 m a−1 for warm cavities such as in the Amundsen Sea region. This makes PICO a computationally feasible and more physical alternative to melt parameterizations purely based on ice draft geometry. |
format |
Article in Journal/Newspaper |
author |
Reese, R. Albrecht, T. Mengel, M. Asay-Davis, X. Winkelmann, R. |
spellingShingle |
Reese, R. Albrecht, T. Mengel, M. Asay-Davis, X. Winkelmann, R. Antarctic sub-shelf melt rates via PICO |
author_facet |
Reese, R. Albrecht, T. Mengel, M. Asay-Davis, X. Winkelmann, R. |
author_sort |
Reese, R. |
title |
Antarctic sub-shelf melt rates via PICO |
title_short |
Antarctic sub-shelf melt rates via PICO |
title_full |
Antarctic sub-shelf melt rates via PICO |
title_fullStr |
Antarctic sub-shelf melt rates via PICO |
title_full_unstemmed |
Antarctic sub-shelf melt rates via PICO |
title_sort |
antarctic sub-shelf melt rates via pico |
publishDate |
2018 |
url |
https://publications.pik-potsdam.de/pubman/item/item_22541 https://publications.pik-potsdam.de/pubman/item/item_22541_1/component/file_22542/8141oa.pdf |
geographic |
Antarctic Southern Ocean The Antarctic Amundsen Sea |
geographic_facet |
Antarctic Southern Ocean The Antarctic Amundsen Sea |
genre |
Amundsen Sea Antarc* Antarctic Ice Sheet Ice Shelf Ice Shelves Southern Ocean The Cryosphere |
genre_facet |
Amundsen Sea Antarc* Antarctic Ice Sheet Ice Shelf Ice Shelves Southern Ocean The Cryosphere |
op_source |
The Cryosphere |
op_relation |
info:eu-repo/semantics/altIdentifier/doi/10.5194/tc-12-1969-2018 https://publications.pik-potsdam.de/pubman/item/item_22541 https://publications.pik-potsdam.de/pubman/item/item_22541_1/component/file_22542/8141oa.pdf |
op_rights |
info:eu-repo/semantics/openAccess |
op_doi |
https://doi.org/10.5194/tc-12-1969-2018 |
container_title |
The Cryosphere |
container_volume |
12 |
container_issue |
6 |
container_start_page |
1969 |
op_container_end_page |
1985 |
_version_ |
1812173525365030912 |