Analysis of multi-dimensional hydrological alterations under climate change for four major river basins in different climate zones

Changes in river discharge regimes are regarded as the primary drivers of change of many in-stream ecological processes. While a lot of assessments addressing the hydrological alteration caused by human activities have been conducted for many river basins worldwide, a comprehensive analysis of hydro...

Full description

Bibliographic Details
Published in:Climatic Change
Main Authors: Wang, X., Yang, T., Wortmann, M., Shi, P., Hattermann, F., Lobanova, A., Aich, V.
Format: Article in Journal/Newspaper
Language:unknown
Published: 2017
Subjects:
Online Access:https://publications.pik-potsdam.de/pubman/item/item_21388
https://publications.pik-potsdam.de/pubman/item/item_21388_1/component/file_21389/7448.pdf
id ftpotsdamik:oai:publications.pik-potsdam.de:item_21388
record_format openpolar
spelling ftpotsdamik:oai:publications.pik-potsdam.de:item_21388 2023-10-29T02:37:45+01:00 Analysis of multi-dimensional hydrological alterations under climate change for four major river basins in different climate zones Wang, X. Yang, T. Wortmann, M. Shi, P. Hattermann, F. Lobanova, A. Aich, V. 2017 application/pdf https://publications.pik-potsdam.de/pubman/item/item_21388 https://publications.pik-potsdam.de/pubman/item/item_21388_1/component/file_21389/7448.pdf unknown info:eu-repo/semantics/altIdentifier/doi/10.1007/s10584-016-1843-6 https://publications.pik-potsdam.de/pubman/item/item_21388 https://publications.pik-potsdam.de/pubman/item/item_21388_1/component/file_21389/7448.pdf Climatic Change info:eu-repo/semantics/article 2017 ftpotsdamik https://doi.org/10.1007/s10584-016-1843-6 2023-09-30T17:59:50Z Changes in river discharge regimes are regarded as the primary drivers of change of many in-stream ecological processes. While a lot of assessments addressing the hydrological alteration caused by human activities have been conducted for many river basins worldwide, a comprehensive analysis of hydrological alteration over major river basins worldwide under climate change is still limited to date. This study aims to address multi-dimensional hydrological alterations (alterations of multiple river flow characteristics) under climate change for four major rivers on three continents, by means of a consolidated framework consisting of two hydrological models, bias-corrected scenarios from five general circulation models (GCMs), and three Representative Concentration Pathways (RCPs) scenarios. The multi-dimensional hydrological alterations are quantified via the general Indicators of Hydrological Alteration approach (IHA) and two modified IHA methods based on dimensionality reduction. The reliability and advantages for the modified IHA methods are also analyzed. The results show that: (1) A modified IHA method (“NR-IHA method”) where the selected non-redundant IHA indices are basin specific is a valid alternative to the conventional IHA method for evaluating flow regime alteration, in consideration that high agreements in the simulated overall flow regimes alteration degree between it and the conventional IHA method are found during historical and future scenario periods, over four basins (the Upper Yellow River, the Lena River, the Tagus River and the Upper Amazon River). (2) Climate change is expected to remarkably alter overall flow regimes in the Tagus River and Upper Yellow River, especially at the end of the 21st century and under high RCP scenarios, whereas the dominant alteration extent tends to be low in the Lena River and Upper Amazon River in the two future periods. (3) The modified IHA method, preventing double-counting some aspects of the flow regime when assessing alteration degree of overall flow ... Article in Journal/Newspaper lena river Publication Database PIK (Potsdam Institute for Climate Impact Research) Climatic Change 141 3 483 498
institution Open Polar
collection Publication Database PIK (Potsdam Institute for Climate Impact Research)
op_collection_id ftpotsdamik
language unknown
description Changes in river discharge regimes are regarded as the primary drivers of change of many in-stream ecological processes. While a lot of assessments addressing the hydrological alteration caused by human activities have been conducted for many river basins worldwide, a comprehensive analysis of hydrological alteration over major river basins worldwide under climate change is still limited to date. This study aims to address multi-dimensional hydrological alterations (alterations of multiple river flow characteristics) under climate change for four major rivers on three continents, by means of a consolidated framework consisting of two hydrological models, bias-corrected scenarios from five general circulation models (GCMs), and three Representative Concentration Pathways (RCPs) scenarios. The multi-dimensional hydrological alterations are quantified via the general Indicators of Hydrological Alteration approach (IHA) and two modified IHA methods based on dimensionality reduction. The reliability and advantages for the modified IHA methods are also analyzed. The results show that: (1) A modified IHA method (“NR-IHA method”) where the selected non-redundant IHA indices are basin specific is a valid alternative to the conventional IHA method for evaluating flow regime alteration, in consideration that high agreements in the simulated overall flow regimes alteration degree between it and the conventional IHA method are found during historical and future scenario periods, over four basins (the Upper Yellow River, the Lena River, the Tagus River and the Upper Amazon River). (2) Climate change is expected to remarkably alter overall flow regimes in the Tagus River and Upper Yellow River, especially at the end of the 21st century and under high RCP scenarios, whereas the dominant alteration extent tends to be low in the Lena River and Upper Amazon River in the two future periods. (3) The modified IHA method, preventing double-counting some aspects of the flow regime when assessing alteration degree of overall flow ...
format Article in Journal/Newspaper
author Wang, X.
Yang, T.
Wortmann, M.
Shi, P.
Hattermann, F.
Lobanova, A.
Aich, V.
spellingShingle Wang, X.
Yang, T.
Wortmann, M.
Shi, P.
Hattermann, F.
Lobanova, A.
Aich, V.
Analysis of multi-dimensional hydrological alterations under climate change for four major river basins in different climate zones
author_facet Wang, X.
Yang, T.
Wortmann, M.
Shi, P.
Hattermann, F.
Lobanova, A.
Aich, V.
author_sort Wang, X.
title Analysis of multi-dimensional hydrological alterations under climate change for four major river basins in different climate zones
title_short Analysis of multi-dimensional hydrological alterations under climate change for four major river basins in different climate zones
title_full Analysis of multi-dimensional hydrological alterations under climate change for four major river basins in different climate zones
title_fullStr Analysis of multi-dimensional hydrological alterations under climate change for four major river basins in different climate zones
title_full_unstemmed Analysis of multi-dimensional hydrological alterations under climate change for four major river basins in different climate zones
title_sort analysis of multi-dimensional hydrological alterations under climate change for four major river basins in different climate zones
publishDate 2017
url https://publications.pik-potsdam.de/pubman/item/item_21388
https://publications.pik-potsdam.de/pubman/item/item_21388_1/component/file_21389/7448.pdf
genre lena river
genre_facet lena river
op_source Climatic Change
op_relation info:eu-repo/semantics/altIdentifier/doi/10.1007/s10584-016-1843-6
https://publications.pik-potsdam.de/pubman/item/item_21388
https://publications.pik-potsdam.de/pubman/item/item_21388_1/component/file_21389/7448.pdf
op_doi https://doi.org/10.1007/s10584-016-1843-6
container_title Climatic Change
container_volume 141
container_issue 3
container_start_page 483
op_container_end_page 498
_version_ 1781062838620520448