Pharmaceuticals and Personal Care Products in Pacific Northwest Coastal Ecosystems: Spatial Variation, Organism Effects, and Consumer Perspectives

Anthropogenic pollution poses a threat to marine organisms and ecosystems worldwide. Common chemical pollutants that enter the marine environment include legacy contaminants, which are well known and heavily regulated or banned pollutants, and emerging contaminants, which are more recently recognize...

Full description

Bibliographic Details
Main Author: Ehrhart, Amy Lynne
Format: Text
Language:English
Published: PDXScholar 2020
Subjects:
Online Access:https://pdxscholar.library.pdx.edu/open_access_etds/5661
https://doi.org/10.15760/etd.7533
https://pdxscholar.library.pdx.edu/context/open_access_etds/article/6734/viewcontent/Ehrhart_psu_0180D_12692.pdf
Description
Summary:Anthropogenic pollution poses a threat to marine organisms and ecosystems worldwide. Common chemical pollutants that enter the marine environment include legacy contaminants, which are well known and heavily regulated or banned pollutants, and emerging contaminants, which are more recently recognized as pollutants and often lack regulatory limits for their use and discharge. Wastewater treatment plant (WWTP) effluent is a major source of various contaminants of concern, particularly pharmaceutical and personal care products (PPCPs) that are not fully removed during treatment. PPCPs exist at low concentrations in the environment and may have unknown and subtle effects on marine life. Data gaps exist on occurrence, effects, and remediation options, especially in coastal areas with low surrounding populations. Additionally, few studies focus on environmentally relevant conditions and organism, population and ecosystem level impacts. The overarching goal of my dissertation research is to examine unexplored aspects of PPCP occurrence, effects, and pollution reduction in the Pacific Northwest. Through a field experiment, I compared PPCP accumulation in and health of Pacific oysters transplanted near WWTP outfalls and aquaculture areas in OR and WA. I also examined small-scale spatial variation in PPCP occurrence and effects along a pollution gradient near those outfalls. To identify organismal effects of PPCP mixtures on oysters, I designed and carried out a lab experiment exposing oysters to environmentally relevant concentrations of effluent from two OR coastal WWTPs. I measured growth, health, and feeding rate over a 12-week exposure period. I also compared PPCP detections and concentrations in effluent from both WWTPs and oyster tissues after effluent exposure. Lastly, I explored a potential opportunity for reducing pharmaceutical pollution with improved drug disposal practices through use and establishment of drug take-back boxes in pharmacies. I conducted surveys with pharmacy customers, interviews with ...