Impact of climate change on Antarctic krill

Antarctic krill Euphausia superba (hereafter ‘krill’) occur in regions undergoing rapid environmental change, particularly loss of winter sea ice. During recent years, harvesting of krill has increased, possibly enhancing stress on krill and Antarctic ecosystems. Here we review the overall impact of...

Full description

Bibliographic Details
Published in:Marine Ecology Progress Series
Main Authors: Flores, H, Atkinson, A, Kawaguchi, S, Krafft, BA, Milinevsky, G, Nicol, S, Reiss, C, Tarling, GA, Werner, R, Bravo Rebolledo, E, Cirelli, V, Cuzin-Roudy, J, Fielding, S, Groeneveld, JJ, Haraldsson, M, Lombana, A, Marschoff, E, Meyer, B, Pakhomov, EA, Rombolá, E, Schmidt, K, Siegel, V, Teschke, M, Tonkes, T, Toullec, JY, Trathan, PN, Tremblay, N, Van de Putte, AP, van Franeker, JA, Werner, T
Format: Article in Journal/Newspaper
Language:unknown
Published: 2012
Subjects:
Online Access:http://plymsea.ac.uk/id/eprint/5325/
https://doi.org/10.3354/meps09831
id ftplymouthml:oai:plymsea.ac.uk:5325
record_format openpolar
spelling ftplymouthml:oai:plymsea.ac.uk:5325 2023-05-15T13:57:46+02:00 Impact of climate change on Antarctic krill Flores, H Atkinson, A Kawaguchi, S Krafft, BA Milinevsky, G Nicol, S Reiss, C Tarling, GA Werner, R Bravo Rebolledo, E Cirelli, V Cuzin-Roudy, J Fielding, S Groeneveld, JJ Haraldsson, M Lombana, A Marschoff, E Meyer, B Pakhomov, EA Rombolá, E Schmidt, K Siegel, V Teschke, M Tonkes, T Toullec, JY Trathan, PN Tremblay, N Van de Putte, AP van Franeker, JA Werner, T 2012-05 http://plymsea.ac.uk/id/eprint/5325/ https://doi.org/10.3354/meps09831 unknown Flores, H; Atkinson, A; Kawaguchi, S; Krafft, BA; Milinevsky, G; Nicol, S; Reiss, C; Tarling, GA; Werner, R; Bravo Rebolledo, E; Cirelli, V; Cuzin-Roudy, J; Fielding, S; Groeneveld, JJ; Haraldsson, M; Lombana, A; Marschoff, E; Meyer, B; Pakhomov, EA; Rombolá, E; Schmidt, K; Siegel, V; Teschke, M; Tonkes, T; Toullec, JY; Trathan, PN; Tremblay, N; Van de Putte, AP; van Franeker, JA; Werner, T. 2012 Impact of climate change on Antarctic krill. Marine Ecology Progress Series, 458. Jan-19. https://doi.org/10.3354/meps09831 <https://doi.org/10.3354/meps09831> Ecology and Environment Marine Sciences Oceanography Publication - Article PeerReviewed 2012 ftplymouthml https://doi.org/10.3354/meps09831 2022-09-13T05:48:13Z Antarctic krill Euphausia superba (hereafter ‘krill’) occur in regions undergoing rapid environmental change, particularly loss of winter sea ice. During recent years, harvesting of krill has increased, possibly enhancing stress on krill and Antarctic ecosystems. Here we review the overall impact of climate change on krill and Antarctic ecosystems, discuss implications for an ecosystem-based fisheries management approach and identify critical knowledge gaps. Sea ice decline, ocean warming and other environmental stressors act in concert to modify the abundance, distribution and life cycle of krill. Although some of these changes can have positive effects on krill, their cumulative impact is most likely negative. Recruitment, driven largely by the winter survival of larval krill, is probably the population parameter most susceptible to climate change. Predicting changes to krill populations is urgent, because they will seriously impact Antarctic ecosystems. Such predictions, however, are complicated by an intense inter-annual variability in recruitment success and krill abundance. To improve the responsiveness of the ecosystem-based management approach adopted by the Commission for the Conservation of Antarctic Marine Living Resources (CCAMLR), critical knowledge gaps need to be filled. In addition to a better understanding of the factors influencing recruitment, management will require a better understanding of the resilience and the genetic plasticity of krill life stages, and a quantitative understanding of under-ice and benthic habitat use. Current precautionary management measures of CCAMLR should be maintained until a better understanding of these processes has been achieved. Article in Journal/Newspaper Antarc* Antarctic Antarctic Krill Euphausia superba Sea ice Plymouth Marine Science Electronic Archive (PlyMSEA - Plymouth Marine Laboratory, PML) Antarctic Marine Ecology Progress Series 458 1 19
institution Open Polar
collection Plymouth Marine Science Electronic Archive (PlyMSEA - Plymouth Marine Laboratory, PML)
op_collection_id ftplymouthml
language unknown
topic Ecology and Environment
Marine Sciences
Oceanography
spellingShingle Ecology and Environment
Marine Sciences
Oceanography
Flores, H
Atkinson, A
Kawaguchi, S
Krafft, BA
Milinevsky, G
Nicol, S
Reiss, C
Tarling, GA
Werner, R
Bravo Rebolledo, E
Cirelli, V
Cuzin-Roudy, J
Fielding, S
Groeneveld, JJ
Haraldsson, M
Lombana, A
Marschoff, E
Meyer, B
Pakhomov, EA
Rombolá, E
Schmidt, K
Siegel, V
Teschke, M
Tonkes, T
Toullec, JY
Trathan, PN
Tremblay, N
Van de Putte, AP
van Franeker, JA
Werner, T
Impact of climate change on Antarctic krill
topic_facet Ecology and Environment
Marine Sciences
Oceanography
description Antarctic krill Euphausia superba (hereafter ‘krill’) occur in regions undergoing rapid environmental change, particularly loss of winter sea ice. During recent years, harvesting of krill has increased, possibly enhancing stress on krill and Antarctic ecosystems. Here we review the overall impact of climate change on krill and Antarctic ecosystems, discuss implications for an ecosystem-based fisheries management approach and identify critical knowledge gaps. Sea ice decline, ocean warming and other environmental stressors act in concert to modify the abundance, distribution and life cycle of krill. Although some of these changes can have positive effects on krill, their cumulative impact is most likely negative. Recruitment, driven largely by the winter survival of larval krill, is probably the population parameter most susceptible to climate change. Predicting changes to krill populations is urgent, because they will seriously impact Antarctic ecosystems. Such predictions, however, are complicated by an intense inter-annual variability in recruitment success and krill abundance. To improve the responsiveness of the ecosystem-based management approach adopted by the Commission for the Conservation of Antarctic Marine Living Resources (CCAMLR), critical knowledge gaps need to be filled. In addition to a better understanding of the factors influencing recruitment, management will require a better understanding of the resilience and the genetic plasticity of krill life stages, and a quantitative understanding of under-ice and benthic habitat use. Current precautionary management measures of CCAMLR should be maintained until a better understanding of these processes has been achieved.
format Article in Journal/Newspaper
author Flores, H
Atkinson, A
Kawaguchi, S
Krafft, BA
Milinevsky, G
Nicol, S
Reiss, C
Tarling, GA
Werner, R
Bravo Rebolledo, E
Cirelli, V
Cuzin-Roudy, J
Fielding, S
Groeneveld, JJ
Haraldsson, M
Lombana, A
Marschoff, E
Meyer, B
Pakhomov, EA
Rombolá, E
Schmidt, K
Siegel, V
Teschke, M
Tonkes, T
Toullec, JY
Trathan, PN
Tremblay, N
Van de Putte, AP
van Franeker, JA
Werner, T
author_facet Flores, H
Atkinson, A
Kawaguchi, S
Krafft, BA
Milinevsky, G
Nicol, S
Reiss, C
Tarling, GA
Werner, R
Bravo Rebolledo, E
Cirelli, V
Cuzin-Roudy, J
Fielding, S
Groeneveld, JJ
Haraldsson, M
Lombana, A
Marschoff, E
Meyer, B
Pakhomov, EA
Rombolá, E
Schmidt, K
Siegel, V
Teschke, M
Tonkes, T
Toullec, JY
Trathan, PN
Tremblay, N
Van de Putte, AP
van Franeker, JA
Werner, T
author_sort Flores, H
title Impact of climate change on Antarctic krill
title_short Impact of climate change on Antarctic krill
title_full Impact of climate change on Antarctic krill
title_fullStr Impact of climate change on Antarctic krill
title_full_unstemmed Impact of climate change on Antarctic krill
title_sort impact of climate change on antarctic krill
publishDate 2012
url http://plymsea.ac.uk/id/eprint/5325/
https://doi.org/10.3354/meps09831
geographic Antarctic
geographic_facet Antarctic
genre Antarc*
Antarctic
Antarctic Krill
Euphausia superba
Sea ice
genre_facet Antarc*
Antarctic
Antarctic Krill
Euphausia superba
Sea ice
op_relation Flores, H; Atkinson, A; Kawaguchi, S; Krafft, BA; Milinevsky, G; Nicol, S; Reiss, C; Tarling, GA; Werner, R; Bravo Rebolledo, E; Cirelli, V; Cuzin-Roudy, J; Fielding, S; Groeneveld, JJ; Haraldsson, M; Lombana, A; Marschoff, E; Meyer, B; Pakhomov, EA; Rombolá, E; Schmidt, K; Siegel, V; Teschke, M; Tonkes, T; Toullec, JY; Trathan, PN; Tremblay, N; Van de Putte, AP; van Franeker, JA; Werner, T. 2012 Impact of climate change on Antarctic krill. Marine Ecology Progress Series, 458. Jan-19. https://doi.org/10.3354/meps09831 <https://doi.org/10.3354/meps09831>
op_doi https://doi.org/10.3354/meps09831
container_title Marine Ecology Progress Series
container_volume 458
container_start_page 1
op_container_end_page 19
_version_ 1766265648078389248