Quantifying uncertainties of permafrost carbon-climate feedbacks

The land surface models JULES (Joint UK Land Environment Simulator, two versions) and ORCHIDEE-MICT (Organizing Carbon and Hydrology in Dynamic Ecosystems), each with a revised representation of permafrost carbon, were coupled to the Integrated Model Of Global Effects of climatic aNomalies (IMOGEN)...

Full description

Bibliographic Details
Published in:Biogeosciences
Main Authors: Burke, Eleanor J., Ekici, Altug, Huang, Ye, Chadburn, Sarah E., Huntingford, Chris, Ciais, Philippe, Friedlingstein, Pierre, Peng, Shushi, Krinner, Gerhard
Other Authors: Burke, EJ (reprint author), Met Off Hadley Ctr, FitzRoy Rd, Exeter EX1 3PB, Devon, England., Met Off Hadley Ctr, FitzRoy Rd, Exeter EX1 3PB, Devon, England., Univ Exeter, Coll Engn Math & Phys Sci, Exeter EX4 4QF, Devon, England., Univ Res Climate, Bergen, Norway., Bjerknes Ctr Climate Res, Bergen, Norway., UVSQ, CEA, Lab Sci Climat & Environm, CNRS,UMR1572, F-91191 Gif Sur Yvette, France., Univ Leeds, Sch Earth & Environm, Leeds LS2 9JT, W Yorkshire, England., Ctr Ecol & Hydrol, Wallingford OX10 8BB, Oxon, England., Peking Univ, Coll Urban & Environm Sci, Sino French Inst Earth Syst Sci, Beijing 100871, Peoples R China., Lab Glaciol & Geophys Environm, F-38402 St Martin Dheres, France.
Format: Journal/Newspaper
Language:English
Published: BIOGEOSCIENCES 2017
Subjects:
Online Access:https://hdl.handle.net/20.500.11897/472708
https://doi.org/10.5194/bg-14-3051-2017
Description
Summary:The land surface models JULES (Joint UK Land Environment Simulator, two versions) and ORCHIDEE-MICT (Organizing Carbon and Hydrology in Dynamic Ecosystems), each with a revised representation of permafrost carbon, were coupled to the Integrated Model Of Global Effects of climatic aNomalies (IMOGEN) intermediate-complexity climate and ocean carbon uptake model. IMOGEN calculates atmospheric carbon dioxide (CO2) and local monthly surface climate for a given emission scenario with the land-atmosphere CO2 flux exchange from either JULES or ORCHIDEE-MICT. These simulations include feedbacks associated with permafrost carbon changes in a warming world. Both IMOGEN-JULES and IMOGEN-ORCHIDEE-MICT were forced by historical and three alternative future-CO2-emission scenarios. Those simulations were performed for different climate sensitivities and regional climate change patterns based on 22 different Earth system models (ESMs) used for CMIP3 (phase 3 of the Coupled Model Intercomparison Project), allowing us to explore climate uncertainties in the context of permafrost carbon-climate feedbacks. Three future emission scenarios consistent with three representative concentration pathways were used: RCP2.6, RCP4.5 and RCP8.5. Paired simulations with and without frozen carbon processes were required to quantify the impact of the permafrost carbon feedback on climate change. The additional warming from the permafrost carbon feedback is between 0.2 and 12% of the change in the global mean temperature (Delta T) by the year 2100 and 0.5 and 17% of Delta T by 2300, with these ranges reflecting differences in land surface models, climate models and emissions pathway. As a percentage of Delta T, the permafrost carbon feedback has a greater impact on the low-emissions scenario (RCP2.6) than on the higher-emissions scenarios, suggesting that permafrost carbon should be taken into account when evaluating scenarios of heavy mitigation and stabilization. Structural differences between the land surface models (particularly the representation of the soil carbon decomposition) are found to be a larger source of uncertainties than differences in the climate response. Inertia in the permafrost carbon system means that the permafrost carbon response depends on the temporal trajectory of warming as well as the absolute amount of warming. We propose a new policy-relevant metric - the frozen carbon residence time (FCRt) in years - that can be derived from these complex land surface models and used to quantify the permafrost carbon response given any pathway of global temperature change. Permafrost in the Arctic and Global Effects in the 21st century (PAGE21) Seventh Framework Programme project [GA282700]; Joint UK BEIS/Defra Met Office Hadley Centre Climate Programme [GA01101]; CRESCENDO (EU project) [641816]; National Environment Research Council [NE/M01990X/1] SCI(E) ARTICLE 12 3051-3066 14