A two-fold increase of carbon cycle sensitivity to tropical temperature variations

Earth system models project that the tropical land carbon sink will decrease in size in response to an increase in warming and drought during this century, probably causing a positive climate feedback(1,2). But available data(3-5) are too limited at present to test the predicted changes in the tropi...

Full description

Bibliographic Details
Published in:Nature
Main Authors: Wang, Xuhui, Piao, Shilong, Ciais, Philippe, Friedlingstein, Pierre, Myneni, Ranga B., Cox, Peter, Heimann, Martin, Miller, John, Peng, Shushi, Wang, Tao, Yang, Hui, Chen, Anping
Other Authors: Piao, SL (reprint author), Peking Univ, Sinofrench Inst Earth Syst Sci, Coll Urban & Environm Sci, Beijing 100871, Peoples R China., Peking Univ, Sinofrench Inst Earth Syst Sci, Coll Urban & Environm Sci, Beijing 100871, Peoples R China., Chinese Acad Sci, Inst Tibetan Plateau Res, Beijing 100085, Peoples R China., CEA CNRS UVSQ, Lab Sci Climat & Environm, F-91191 Gif Sur Yvette, France., Univ Exeter, Coll Engn Math & Phys Sci, Exeter EX4 4QF, Devon, England., Boston Univ, Dept Earth & Environm, Boston, MA 02215 USA., Max Planck Inst Biogeochem, D-07701 Jena, Germany., NOAA, Global Monitoring Div, Earth Syst Res Lab, Boulder, CO 80305 USA., Univ Colorado, Cooperat Inst Res Environm Sci, Boulder, CO 80309 USA., Princeton Univ, Dept Ecol & Evolutionary Biol, Princeton, NJ 08544 USA.
Format: Journal/Newspaper
Language:English
Published: nature 2014
Subjects:
CO2
Online Access:https://hdl.handle.net/20.500.11897/322084
https://doi.org/10.1038/nature12915
Description
Summary:Earth system models project that the tropical land carbon sink will decrease in size in response to an increase in warming and drought during this century, probably causing a positive climate feedback(1,2). But available data(3-5) are too limited at present to test the predicted changes in the tropical carbon balance in response to climate change. Long-term atmospheric carbon dioxide data provide a global record that integrates the interannual variability of the global carbon balance. Multiple lines of evidence(6-8) demonstrate that most of this variability originates in the terrestrial biosphere. In particular, the year-to-year variations in the atmospheric carbon dioxide growth rate (CGR) are thought to be the result of fluctuations in the carbon fluxes of tropical land areas(6,9,10). Recently, the response of CGR to tropical climate interannual variability was used to put a constraint on the sensitivity of tropical land carbon to climate change(10). Here we use the long-term CGR record from Mauna Loa and the South Pole to show that the sensitivity of CGR to tropical temperature interannual variability has increased by a factor of 1.9 +/- 0.3 in the past five decades. We find that this sensitivity was greater when tropical land regions experienced drier conditions. This suggests that the sensitivity of CGR to interannual temperature variations is regulated by moisture conditions, even though the direct correlation between CGR and tropical precipitation is weak(9). We also find that present terrestrial carbon cycle models do not capture the observed enhancement in CGR sensitivity in the past five decades. More realistic model predictions of future carbon cycle and climate feedbacks require a better understanding of the processes driving the response of tropical ecosystems to drought and warming. Multidisciplinary Sciences SCI(E) PubMed 14 ARTICLE slpiao@pku.edu.cn 7487 212-+ 506