N water chemistry from small Arctic streams in relation to vegetation cover

In the Arctic, little information is available, especially in terms of N availability and composition (i.e., nitrate, ammonium, and dissolved organic nitrogen) from small, flowing waters. This data set aims to quantify N concentrations across small Arctic streams and explore the link between terrest...

Full description

Bibliographic Details
Main Authors: Holmboe, Cecilie Marie Hartvig, Riis, Tenna, Pastor, Ada
Format: Dataset
Language:English
Published: PANGAEA 2024
Subjects:
air
Online Access:https://doi.pangaea.de/10.1594/PANGAEA.965140
https://doi.org/10.1594/PANGAEA.965140
id ftpangaea:oai:pangaea.de:doi:10.1594/PANGAEA.965140
record_format openpolar
institution Open Polar
collection PANGAEA - Data Publisher for Earth & Environmental Science
op_collection_id ftpangaea
language English
topic Ammonium
Ammonium/Nitrate ratio
Arctic
Arctic_streams
Area/locality
Biomass
aboveground
Category
Country
Date
Description
Identification
LATITUDE
Literature based
LONGITUDE
Month
Name
Nitrate
Nitrogen
inorganic
dissolved
dissolved/Nitrogen
organic
dissolved ratio
total dissolved
Normalized Difference Vegetation Index
Organic carbon
soil
Precipitation
annual mean
Reference/source
streams
Subzone
Temperature
air
maximum
minimum
spellingShingle Ammonium
Ammonium/Nitrate ratio
Arctic
Arctic_streams
Area/locality
Biomass
aboveground
Category
Country
Date
Description
Identification
LATITUDE
Literature based
LONGITUDE
Month
Name
Nitrate
Nitrogen
inorganic
dissolved
dissolved/Nitrogen
organic
dissolved ratio
total dissolved
Normalized Difference Vegetation Index
Organic carbon
soil
Precipitation
annual mean
Reference/source
streams
Subzone
Temperature
air
maximum
minimum
Holmboe, Cecilie Marie Hartvig
Riis, Tenna
Pastor, Ada
N water chemistry from small Arctic streams in relation to vegetation cover
topic_facet Ammonium
Ammonium/Nitrate ratio
Arctic
Arctic_streams
Area/locality
Biomass
aboveground
Category
Country
Date
Description
Identification
LATITUDE
Literature based
LONGITUDE
Month
Name
Nitrate
Nitrogen
inorganic
dissolved
dissolved/Nitrogen
organic
dissolved ratio
total dissolved
Normalized Difference Vegetation Index
Organic carbon
soil
Precipitation
annual mean
Reference/source
streams
Subzone
Temperature
air
maximum
minimum
description In the Arctic, little information is available, especially in terms of N availability and composition (i.e., nitrate, ammonium, and dissolved organic nitrogen) from small, flowing waters. This data set aims to quantify N concentrations across small Arctic streams and explore the link between terrestrial vegetation and stream water N concentration. The data set is the result of a literature study where data on N water chemistry was collected and combined from peer-reviewed, published articles and data sets selected by specific criteria. 20 articles met the selected criteria along with four datasets from databases resulting in a total of 2381 observations on N water chemistry from Arctic flowing waters from 1996 to 2021. Bioclimate subzones, NDVI and phytomass describe vegetation. Data on dissolved organic nitrogen (DON) was scarce: only 161 of the 2381 observations contained DON data. We found that nitrate (NO3-), ammonium (NH4+) and DON ranged undetectable to 1155, 547 and 1587 µg N/l, respectively. We found that sparsely vegetated areas had higher stream water N-concentrations, while barren areas and higher vegetated areas had lower stream water N-concentrations.
format Dataset
author Holmboe, Cecilie Marie Hartvig
Riis, Tenna
Pastor, Ada
author_facet Holmboe, Cecilie Marie Hartvig
Riis, Tenna
Pastor, Ada
author_sort Holmboe, Cecilie Marie Hartvig
title N water chemistry from small Arctic streams in relation to vegetation cover
title_short N water chemistry from small Arctic streams in relation to vegetation cover
title_full N water chemistry from small Arctic streams in relation to vegetation cover
title_fullStr N water chemistry from small Arctic streams in relation to vegetation cover
title_full_unstemmed N water chemistry from small Arctic streams in relation to vegetation cover
title_sort n water chemistry from small arctic streams in relation to vegetation cover
publisher PANGAEA
publishDate 2024
url https://doi.pangaea.de/10.1594/PANGAEA.965140
https://doi.org/10.1594/PANGAEA.965140
op_coverage MEDIAN LATITUDE: 70.411016 * MEDIAN LONGITUDE: -102.616162 * SOUTH-BOUND LATITUDE: 66.117611 * WEST-BOUND LONGITUDE: -149.725998 * NORTH-BOUND LATITUDE: 78.946300 * EAST-BOUND LONGITUDE: 66.090000
long_lat ENVELOPE(-149.725998,66.090000,78.946300,66.117611)
genre Arctic
Polar Biology
Polar Research
genre_facet Arctic
Polar Biology
Polar Research
op_relation Holmboe, Cecilie Marie Hartvig; Pastor, Ada; Riis, Tenna (2024): Stream Nitrogen Concentrations Across Arctic Vegetation Gradients. Global Biogeochemical Cycles, 38(2), e2023GB007840, https://doi.org/10.1029/2023GB007840
GeoBasis Disko - Hydrology - RiverWaterChemistry (2020). Greenland Ecosystem Monitoring, https://doi.org/10.17897/ZJK8-0B45
GeoBasis Zackenberg - Hydrology - River_water_chemistry (2020). Greenland Ecosystem Monitoring, https://doi.org/10.17897/1GTF-SX86
Ansari, A H; Hodson, A J; Heaton, Timothy H E; Kaiser, J; Marca-Bell, Alina (2013): Stable isotopic evidence for nitrification and denitrification in a High Arctic glacial ecosystem. Biogeochemistry, 113(1-3), 341-357, https://doi.org/10.1007/s10533-012-9761-9
Benstead, Jonathan P; Deegan, Linda A; Peterson, Bruce J; Huryn, Alexander D; Bowden, William B; Suberkropp, Keller; Buzby, Karen M; Green, Adrian C; Vacca, Jay A (2005): Responses of a beaded Arctic stream to short‐term N and P fertilisation. Freshwater Biology, 50(2), 277-290, https://doi.org/10.1111/j.1365-2427.2004.01319.x
Blaen, P J; Milner, A M; Hannah, D M; Brittain, J E; Brown, L E (2014): IMPACT OF CHANGING HYDROLOGY ON NUTRIENT UPTAKE IN HIGH ARCTIC RIVERS. River Research and Applications, 30(9), 1073-1083, https://doi.org/10.1002/rra.2706
Bowden, W B; Gooseff, M N; Balser, Andrew; Green, Andrew; Peterson, B J; Bradford, J (2008): Sediment and nutrient delivery from thermokarst features in the foothills of the North Slope, Alaska: Potential impacts on headwater stream ecosystems. Journal of Geophysical Research, 113(G2), 2007JG000470, https://doi.org/10.1029/2007JG000470
Bowden, William B (2021): Arctic LTER Streams Chemistry Toolik Field Station, Alaska 1978 to 2019 [dataset]. Environmental Data Initiative, https://doi.org/10.6073/PASTA/3FAACD18B63B3BACC5A0DBD6F09660E1
Docherty, Catherine L; Riis, Tenna; Hannah, David M; Rosenhøj Leth, Simon; Milner, Alexander M (2018): Nutrient uptake controls and limitation dynamics in north-east Greenland streams. Polar Research, 37(1), 1440107, https://doi.org/10.1080/17518369.2018.1440107
Friberg, Nikolai; Milner, Alexander M; Svendsen, Lars M; Lindegaard, Claus; Larsen, Søren Erik (2001): Macroinvertebrate stream communities along regional and physico‐chemical gradients in Western Greenland. Freshwater Biology, 46(12), 1753-1764, https://doi.org/10.1046/j.1365-2427.2001.00857.x
Kanna, Naoya; Sugiyama, Shin; Fukamachi, Yasushi; Nomura, Daiki; Nishioka, Jun (2020): Iron Supply by Subglacial Discharge Into a Fjord Near the Front of a Marine‐Terminating Glacier in Northwestern Greenland. Global Biogeochemical Cycles, 34(10), e2020GB006567, https://doi.org/10.1029/2020GB006567
Kellerman, Anne M; Hawkings, Jon R; Wadham, Jemma; Kohler, Tyler; Stibal, Marek; Grater, Elizabeth; Marshall, Matthew; Hatton, Jade Elizabeth; Beaton, Alexander; Spencer, Robert G M (accepted): Glacier outflow dissolved organic matter as a window into seasonally changing carbon sources: Leverett Glacier, Greenland. Journal of Geophysical Research: Biogeosciences, e2019JG005161, https://doi.org/10.1029/2019JG005161
Kohler, T J; Vinšová, Petra; Falteisek, Lukáš; Žárský, J D; Yde, J C; Hatton, Jade Elizabeth; Hawkings, Jon R; Lamarche-Gagnon, G; Hood, Eran; Cameron, Karen A; Stibal, Marek (2020): Patterns in Microbial Assemblages Exported From the Meltwater of Arctic and Sub-Arctic Glaciers. Frontiers in Microbiology, 11, 669, https://doi.org/10.3389/fmicb.2020.00669
Martin, Jonathan B; Pain, Andrea J; Martin, Ellen E; Rahman, Shaily; Ackerman, Philip (2020): Comparisons of Nutrients Exported From Greenlandic Glacial and Deglaciated Watersheds. Global Biogeochemical Cycles, 34(12), e2020GB006661, https://doi.org/10.1029/2020GB006661
Pastor, Ada; Freixa, Anna; Skovsholt, Louis J; Wu, Naicheng; Romaní, Anna M; Riis, Tenna (2019): Microbial Organic Matter Utilization in High-Arctic Streams: Key Enzymatic Controls. Microbial Ecology, 78(3), 539-554, https://doi.org/10.1007/s00248-019-01330-w
Pastor, Ada; Manolaki, Paraskevi; Freixa, Anna; Giménez-Grau, Pau; Romaní, Anna M; Riis, Tenna (2021): Temperature-induced changes in biofilm organic matter utilization in arctic streams (Disko Island, Greenland). Polar Biology, 44(11), 2177-2188, https://doi.org/10.1007/s00300-021-02955-9
Pastor, Ada; Skovsholt, Louis J; Christoffersen, Kirsten Seestern; Wu, Naicheng; Riis, Tenna (2021): Geomorphology and vegetation drive hydrochemistry changes in two Northeast Greenland streams. Hydrological Processes, 35(10), e14369, https://doi.org/10.1002/hyp.14369
Paulsen, Maria Lund; Nielsen, Sophia E B; Müller, Oliver; Møller, Eva Friis; Stedmon, Colin A; Juul-Pedersen, Thomas; Markager, Stiig; Sejr, Mikael K; Delgado Huertas, Antonio; Larsen, Aud; Middelboe, Mathias (2017): Carbon Bioavailability in a High Arctic Fjord Influenced by Glacial Meltwater, NE Greenland. Frontiers in Marine Science, 4, 176, https://doi.org/10.3389/fmars.2017.00176
Skovsholt, Louis J; Pastor, Ada; Docherty, Catherine L; Milner, Alexander M; Riis, Tenna (2020): Changes in hydrology affects stream nutrient uptake and primary production in a high-Arctic stream. Biogeochemistry, 151(2-3), 187-201, https://doi.org/10.1007/s10533-020-00719-x
Snyder, Lisle; Bowden, William B (2014): Nutrient dynamics in an oligotrophic arctic stream monitored in situ by wet chemistry methods. Water Resources Research, 50(3), 2039-2049, https://doi.org/10.1002/2013WR014317
Stachnik, Łukasz; Wałach, Piotr; Uzarowicz, Łukasz; Yde, Jacob C; Tosheva, Zornitza; Wrońska-Wałach, Dominika (2014): Water chemistry and hydrometeorology in a glacierized catchment in the Polar Urals, Russia. Journal of Mountain Science, 11(5), 1097-1111, https://doi.org/10.1007/s11629-014-3034-0
Stutter, M I; Billett, Michael F (2003): Biogeochemical controls on streamwater and soil solution chemistry in a High Arctic environment. Geoderma, 113(1-2), 127-146, https://doi.org/10.1016/S0016-7061(02)00335-X
Webster, Jackson R; Mulholland, Patrick J; Tank, J L; Valett, H Maurice; Dodds, Walter K; Peterson, Bruce J; Bowden, W B; Dahm, Clifford N; Findlay, Stuart E G; Gregory, Stanley V; Grimm, Nancy B; Hamilton, Stephen K; Johnson, Sherri L; Martí, Eugènia; Mcdowell, William H; Meyer, Judy L; Morrall, Donna D; Thomas, S A; Wollheim, Wilfred M (2003): Factors affecting ammonium uptake in streams – an inter‐biome perspective. Freshwater Biology, 48(8), 1329-1352, https://doi.org/10.1046/j.1365-2427.2003.01094.x
Wynn, P M; Hodson, A J; Heaton, Timothy H E; Chenery, S R (2007): Nitrate production beneath a High Arctic glacier, Svalbard. Chemical Geology, 244(1-2), 88-102, https://doi.org/10.1016/j.chemgeo.2007.06.008
Fick, Stephen E; Hijmans, Robert J (2017): WorldClim 2: new 1‐km spatial resolution climate surfaces for global land areas. International Journal of Climatology, 37(12), 4302-4315, https://doi.org/10.1002/joc.5086
García Cárdenas, Diego Alejandro; Ramón Valencia, Jacipt Alexander; Alzate Velásquez, Diego Fernando; Palacios Gonzalez, Jordi Rafael (2019): Dynamics of the Indices NDVI and GNDVI in a Rice Growing in Its Reproduction Phase from Multi-spectral Aerial Images Taken by Drones. In: Corrales, JC, Angelov, P, Iglesias, JA (eds.), Advances in Information and Communication Technologies for Adapting Agriculture to Climate Change II, Advances in Intelligent Systems and Computing, 893, Springer International Publishing, Cham, 106-119, https://doi.org/10.1007/978-3-030-04447-3_7
Julien, Yves; Sobrino, José Antonio; Verhoef, Wout (2006): Changes in land surface temperatures and NDVI values over Europe between 1982 and 1999. Remote Sensing of Environment, 103(1), 43-55, https://doi.org/10.1016/j.rse.2006.03.011
Lembrechts, Jonas J; van den Hoogen, Johan; Aalto, Juha; et al. (2021): Global maps of soil temperature. Global Change Biology, 28(9), 3110-3144, https://doi.org/10.1111/gcb.16060
Raynolds, Martha K; Walker, Donald A; Maier, H A (2006): NDVI patterns and phytomass distribution in the circumpolar Arctic. Remote Sensing of Environment, 102(3-4), 271-281, https://doi.org/10.1016/j.rse.2006.02.016
Sobrino, José Antonio; Raissouni, N (2000): Toward remote sensing methods for land cover dynamic monitoring: Application to Morocco. International Journal of Remote Sensing, 21(2), 353-366, https://doi.org/10.1080/014311600210876
Walker, Donald A; Epstein, Howard E; Jia, G I; Balser, Andrew; Copass, C; Edwards, E J; Gould, William A; Hollingsworth, J; Knudson, J; Maier, H A; Moody, A; Raynolds, Martha K (2003): Phytomass, LAI, and NDVI in northern Alaska: Relationships to summer warmth, soil pH, plant functional types, and extrapolation to the circumpolar Arctic. Journal of Geophysical Research, 108(D2), 2001JD000986, https://doi.org/10.1029/2001JD000986
Walker, Donald A; Raynolds, Martha K; Daniëls, Fred J A; Einarsson, Eythor; Elvebakk, Arve; Gould, William A; Katenin, Adrian E; Kholod, Sergei S; Markon, Carl J; Melnikov, Evgeny S; Moskalenko, Natalia G; Talbot, Stephen S; Yurtsev, Boris A; CAVM Team (2005): The Circumpolar Arctic vegetation map. Journal of Vegetation Science, 16(3), 267-282, https://doi.org/10.1111/j.1654-1103.2005.tb02365.x
https://doi.pangaea.de/10.1594/PANGAEA.965140
https://doi.org/10.1594/PANGAEA.965140
op_rights CC-BY-4.0: Creative Commons Attribution 4.0 International
Access constraints: unrestricted
info:eu-repo/semantics/openAccess
op_doi https://doi.org/10.1594/PANGAEA.96514010.1029/2023GB00784010.17897/ZJK8-0B4510.17897/1GTF-SX8610.1007/s10533-012-9761-910.1111/j.1365-2427.2004.01319.x10.1002/rra.270610.1029/2007JG00047010.6073/PASTA/3FAACD18B63B3BACC5A0DBD6F09660E110.1080/17518369.2018.
_version_ 1810293204054966272
spelling ftpangaea:oai:pangaea.de:doi:10.1594/PANGAEA.965140 2024-09-15T17:51:19+00:00 N water chemistry from small Arctic streams in relation to vegetation cover Holmboe, Cecilie Marie Hartvig Riis, Tenna Pastor, Ada MEDIAN LATITUDE: 70.411016 * MEDIAN LONGITUDE: -102.616162 * SOUTH-BOUND LATITUDE: 66.117611 * WEST-BOUND LONGITUDE: -149.725998 * NORTH-BOUND LATITUDE: 78.946300 * EAST-BOUND LONGITUDE: 66.090000 2024 text/tab-separated-values, 65302 data points https://doi.pangaea.de/10.1594/PANGAEA.965140 https://doi.org/10.1594/PANGAEA.965140 en eng PANGAEA Holmboe, Cecilie Marie Hartvig; Pastor, Ada; Riis, Tenna (2024): Stream Nitrogen Concentrations Across Arctic Vegetation Gradients. Global Biogeochemical Cycles, 38(2), e2023GB007840, https://doi.org/10.1029/2023GB007840 GeoBasis Disko - Hydrology - RiverWaterChemistry (2020). Greenland Ecosystem Monitoring, https://doi.org/10.17897/ZJK8-0B45 GeoBasis Zackenberg - Hydrology - River_water_chemistry (2020). Greenland Ecosystem Monitoring, https://doi.org/10.17897/1GTF-SX86 Ansari, A H; Hodson, A J; Heaton, Timothy H E; Kaiser, J; Marca-Bell, Alina (2013): Stable isotopic evidence for nitrification and denitrification in a High Arctic glacial ecosystem. Biogeochemistry, 113(1-3), 341-357, https://doi.org/10.1007/s10533-012-9761-9 Benstead, Jonathan P; Deegan, Linda A; Peterson, Bruce J; Huryn, Alexander D; Bowden, William B; Suberkropp, Keller; Buzby, Karen M; Green, Adrian C; Vacca, Jay A (2005): Responses of a beaded Arctic stream to short‐term N and P fertilisation. Freshwater Biology, 50(2), 277-290, https://doi.org/10.1111/j.1365-2427.2004.01319.x Blaen, P J; Milner, A M; Hannah, D M; Brittain, J E; Brown, L E (2014): IMPACT OF CHANGING HYDROLOGY ON NUTRIENT UPTAKE IN HIGH ARCTIC RIVERS. River Research and Applications, 30(9), 1073-1083, https://doi.org/10.1002/rra.2706 Bowden, W B; Gooseff, M N; Balser, Andrew; Green, Andrew; Peterson, B J; Bradford, J (2008): Sediment and nutrient delivery from thermokarst features in the foothills of the North Slope, Alaska: Potential impacts on headwater stream ecosystems. Journal of Geophysical Research, 113(G2), 2007JG000470, https://doi.org/10.1029/2007JG000470 Bowden, William B (2021): Arctic LTER Streams Chemistry Toolik Field Station, Alaska 1978 to 2019 [dataset]. Environmental Data Initiative, https://doi.org/10.6073/PASTA/3FAACD18B63B3BACC5A0DBD6F09660E1 Docherty, Catherine L; Riis, Tenna; Hannah, David M; Rosenhøj Leth, Simon; Milner, Alexander M (2018): Nutrient uptake controls and limitation dynamics in north-east Greenland streams. Polar Research, 37(1), 1440107, https://doi.org/10.1080/17518369.2018.1440107 Friberg, Nikolai; Milner, Alexander M; Svendsen, Lars M; Lindegaard, Claus; Larsen, Søren Erik (2001): Macroinvertebrate stream communities along regional and physico‐chemical gradients in Western Greenland. Freshwater Biology, 46(12), 1753-1764, https://doi.org/10.1046/j.1365-2427.2001.00857.x Kanna, Naoya; Sugiyama, Shin; Fukamachi, Yasushi; Nomura, Daiki; Nishioka, Jun (2020): Iron Supply by Subglacial Discharge Into a Fjord Near the Front of a Marine‐Terminating Glacier in Northwestern Greenland. Global Biogeochemical Cycles, 34(10), e2020GB006567, https://doi.org/10.1029/2020GB006567 Kellerman, Anne M; Hawkings, Jon R; Wadham, Jemma; Kohler, Tyler; Stibal, Marek; Grater, Elizabeth; Marshall, Matthew; Hatton, Jade Elizabeth; Beaton, Alexander; Spencer, Robert G M (accepted): Glacier outflow dissolved organic matter as a window into seasonally changing carbon sources: Leverett Glacier, Greenland. Journal of Geophysical Research: Biogeosciences, e2019JG005161, https://doi.org/10.1029/2019JG005161 Kohler, T J; Vinšová, Petra; Falteisek, Lukáš; Žárský, J D; Yde, J C; Hatton, Jade Elizabeth; Hawkings, Jon R; Lamarche-Gagnon, G; Hood, Eran; Cameron, Karen A; Stibal, Marek (2020): Patterns in Microbial Assemblages Exported From the Meltwater of Arctic and Sub-Arctic Glaciers. Frontiers in Microbiology, 11, 669, https://doi.org/10.3389/fmicb.2020.00669 Martin, Jonathan B; Pain, Andrea J; Martin, Ellen E; Rahman, Shaily; Ackerman, Philip (2020): Comparisons of Nutrients Exported From Greenlandic Glacial and Deglaciated Watersheds. Global Biogeochemical Cycles, 34(12), e2020GB006661, https://doi.org/10.1029/2020GB006661 Pastor, Ada; Freixa, Anna; Skovsholt, Louis J; Wu, Naicheng; Romaní, Anna M; Riis, Tenna (2019): Microbial Organic Matter Utilization in High-Arctic Streams: Key Enzymatic Controls. Microbial Ecology, 78(3), 539-554, https://doi.org/10.1007/s00248-019-01330-w Pastor, Ada; Manolaki, Paraskevi; Freixa, Anna; Giménez-Grau, Pau; Romaní, Anna M; Riis, Tenna (2021): Temperature-induced changes in biofilm organic matter utilization in arctic streams (Disko Island, Greenland). Polar Biology, 44(11), 2177-2188, https://doi.org/10.1007/s00300-021-02955-9 Pastor, Ada; Skovsholt, Louis J; Christoffersen, Kirsten Seestern; Wu, Naicheng; Riis, Tenna (2021): Geomorphology and vegetation drive hydrochemistry changes in two Northeast Greenland streams. Hydrological Processes, 35(10), e14369, https://doi.org/10.1002/hyp.14369 Paulsen, Maria Lund; Nielsen, Sophia E B; Müller, Oliver; Møller, Eva Friis; Stedmon, Colin A; Juul-Pedersen, Thomas; Markager, Stiig; Sejr, Mikael K; Delgado Huertas, Antonio; Larsen, Aud; Middelboe, Mathias (2017): Carbon Bioavailability in a High Arctic Fjord Influenced by Glacial Meltwater, NE Greenland. Frontiers in Marine Science, 4, 176, https://doi.org/10.3389/fmars.2017.00176 Skovsholt, Louis J; Pastor, Ada; Docherty, Catherine L; Milner, Alexander M; Riis, Tenna (2020): Changes in hydrology affects stream nutrient uptake and primary production in a high-Arctic stream. Biogeochemistry, 151(2-3), 187-201, https://doi.org/10.1007/s10533-020-00719-x Snyder, Lisle; Bowden, William B (2014): Nutrient dynamics in an oligotrophic arctic stream monitored in situ by wet chemistry methods. Water Resources Research, 50(3), 2039-2049, https://doi.org/10.1002/2013WR014317 Stachnik, Łukasz; Wałach, Piotr; Uzarowicz, Łukasz; Yde, Jacob C; Tosheva, Zornitza; Wrońska-Wałach, Dominika (2014): Water chemistry and hydrometeorology in a glacierized catchment in the Polar Urals, Russia. Journal of Mountain Science, 11(5), 1097-1111, https://doi.org/10.1007/s11629-014-3034-0 Stutter, M I; Billett, Michael F (2003): Biogeochemical controls on streamwater and soil solution chemistry in a High Arctic environment. Geoderma, 113(1-2), 127-146, https://doi.org/10.1016/S0016-7061(02)00335-X Webster, Jackson R; Mulholland, Patrick J; Tank, J L; Valett, H Maurice; Dodds, Walter K; Peterson, Bruce J; Bowden, W B; Dahm, Clifford N; Findlay, Stuart E G; Gregory, Stanley V; Grimm, Nancy B; Hamilton, Stephen K; Johnson, Sherri L; Martí, Eugènia; Mcdowell, William H; Meyer, Judy L; Morrall, Donna D; Thomas, S A; Wollheim, Wilfred M (2003): Factors affecting ammonium uptake in streams – an inter‐biome perspective. Freshwater Biology, 48(8), 1329-1352, https://doi.org/10.1046/j.1365-2427.2003.01094.x Wynn, P M; Hodson, A J; Heaton, Timothy H E; Chenery, S R (2007): Nitrate production beneath a High Arctic glacier, Svalbard. Chemical Geology, 244(1-2), 88-102, https://doi.org/10.1016/j.chemgeo.2007.06.008 Fick, Stephen E; Hijmans, Robert J (2017): WorldClim 2: new 1‐km spatial resolution climate surfaces for global land areas. International Journal of Climatology, 37(12), 4302-4315, https://doi.org/10.1002/joc.5086 García Cárdenas, Diego Alejandro; Ramón Valencia, Jacipt Alexander; Alzate Velásquez, Diego Fernando; Palacios Gonzalez, Jordi Rafael (2019): Dynamics of the Indices NDVI and GNDVI in a Rice Growing in Its Reproduction Phase from Multi-spectral Aerial Images Taken by Drones. In: Corrales, JC, Angelov, P, Iglesias, JA (eds.), Advances in Information and Communication Technologies for Adapting Agriculture to Climate Change II, Advances in Intelligent Systems and Computing, 893, Springer International Publishing, Cham, 106-119, https://doi.org/10.1007/978-3-030-04447-3_7 Julien, Yves; Sobrino, José Antonio; Verhoef, Wout (2006): Changes in land surface temperatures and NDVI values over Europe between 1982 and 1999. Remote Sensing of Environment, 103(1), 43-55, https://doi.org/10.1016/j.rse.2006.03.011 Lembrechts, Jonas J; van den Hoogen, Johan; Aalto, Juha; et al. (2021): Global maps of soil temperature. Global Change Biology, 28(9), 3110-3144, https://doi.org/10.1111/gcb.16060 Raynolds, Martha K; Walker, Donald A; Maier, H A (2006): NDVI patterns and phytomass distribution in the circumpolar Arctic. Remote Sensing of Environment, 102(3-4), 271-281, https://doi.org/10.1016/j.rse.2006.02.016 Sobrino, José Antonio; Raissouni, N (2000): Toward remote sensing methods for land cover dynamic monitoring: Application to Morocco. International Journal of Remote Sensing, 21(2), 353-366, https://doi.org/10.1080/014311600210876 Walker, Donald A; Epstein, Howard E; Jia, G I; Balser, Andrew; Copass, C; Edwards, E J; Gould, William A; Hollingsworth, J; Knudson, J; Maier, H A; Moody, A; Raynolds, Martha K (2003): Phytomass, LAI, and NDVI in northern Alaska: Relationships to summer warmth, soil pH, plant functional types, and extrapolation to the circumpolar Arctic. Journal of Geophysical Research, 108(D2), 2001JD000986, https://doi.org/10.1029/2001JD000986 Walker, Donald A; Raynolds, Martha K; Daniëls, Fred J A; Einarsson, Eythor; Elvebakk, Arve; Gould, William A; Katenin, Adrian E; Kholod, Sergei S; Markon, Carl J; Melnikov, Evgeny S; Moskalenko, Natalia G; Talbot, Stephen S; Yurtsev, Boris A; CAVM Team (2005): The Circumpolar Arctic vegetation map. Journal of Vegetation Science, 16(3), 267-282, https://doi.org/10.1111/j.1654-1103.2005.tb02365.x https://doi.pangaea.de/10.1594/PANGAEA.965140 https://doi.org/10.1594/PANGAEA.965140 CC-BY-4.0: Creative Commons Attribution 4.0 International Access constraints: unrestricted info:eu-repo/semantics/openAccess Ammonium Ammonium/Nitrate ratio Arctic Arctic_streams Area/locality Biomass aboveground Category Country Date Description Identification LATITUDE Literature based LONGITUDE Month Name Nitrate Nitrogen inorganic dissolved dissolved/Nitrogen organic dissolved ratio total dissolved Normalized Difference Vegetation Index Organic carbon soil Precipitation annual mean Reference/source streams Subzone Temperature air maximum minimum dataset 2024 ftpangaea https://doi.org/10.1594/PANGAEA.96514010.1029/2023GB00784010.17897/ZJK8-0B4510.17897/1GTF-SX8610.1007/s10533-012-9761-910.1111/j.1365-2427.2004.01319.x10.1002/rra.270610.1029/2007JG00047010.6073/PASTA/3FAACD18B63B3BACC5A0DBD6F09660E110.1080/17518369.2018. 2024-07-24T02:31:35Z In the Arctic, little information is available, especially in terms of N availability and composition (i.e., nitrate, ammonium, and dissolved organic nitrogen) from small, flowing waters. This data set aims to quantify N concentrations across small Arctic streams and explore the link between terrestrial vegetation and stream water N concentration. The data set is the result of a literature study where data on N water chemistry was collected and combined from peer-reviewed, published articles and data sets selected by specific criteria. 20 articles met the selected criteria along with four datasets from databases resulting in a total of 2381 observations on N water chemistry from Arctic flowing waters from 1996 to 2021. Bioclimate subzones, NDVI and phytomass describe vegetation. Data on dissolved organic nitrogen (DON) was scarce: only 161 of the 2381 observations contained DON data. We found that nitrate (NO3-), ammonium (NH4+) and DON ranged undetectable to 1155, 547 and 1587 µg N/l, respectively. We found that sparsely vegetated areas had higher stream water N-concentrations, while barren areas and higher vegetated areas had lower stream water N-concentrations. Dataset Arctic Polar Biology Polar Research PANGAEA - Data Publisher for Earth & Environmental Science ENVELOPE(-149.725998,66.090000,78.946300,66.117611)