Atlantic inflow into the southern Nordic Seas at the onset of the LGM promotes open-ocean conditions and Fennoscandian Ice Sheet growth

Tephra analysis (FMAZ II-1 tephra marker) on a network of ten marine sediment cores in the northern North Atlantic is presented as well as radiocarbon dates (14C) by Accelerator Mass Spectrometry (AMS) of the same layers. We use published data for the Tephra horizon's identified in the cores to...

Full description

Bibliographic Details
Main Authors: Simon, Margit H, Rutledal, Sunniva, Menviel, Laurie, Zolles, Tobias, Haflidason, Haflidi, Born, Andreas, Berben, Sarah M P, Dokken, Trond
Format: Dataset
Language:English
Published: PANGAEA 2024
Subjects:
Age
PC
Online Access:https://doi.pangaea.de/10.1594/PANGAEA.964056
https://doi.org/10.1594/PANGAEA.964056
id ftpangaea:oai:pangaea.de:doi:10.1594/PANGAEA.964056
record_format openpolar
institution Open Polar
collection PANGAEA - Data Publisher for Earth & Environmental Science
op_collection_id ftpangaea
language English
topic 14C age
2bis68Fgif
3664N/S
Age
14C AMS
14C calibrated
dated
dated standard error
CALYPSO
Calypso Corer
ENAM30
ENAM33
ENAM93-20
ENAM9321
ENAM93-21
Event label
Faroe Islands margin
G. O. Sars (2003)
GS16-204-18CC
GS2016-204
IMAGES V
Irminger Sea
JM11-19PC
LINK04
LINK17
Marine reservoir ages
Marine Reservoir age transfer-function (Adolphi et al. 2018)
Marion Dufresne (1995)
MD114
MD99-2284
MD99-2289
N. Shetland channel
PC
Piston corer
Reference/source
Reservoir age
standard error
Southern Vøring plateau
spellingShingle 14C age
2bis68Fgif
3664N/S
Age
14C AMS
14C calibrated
dated
dated standard error
CALYPSO
Calypso Corer
ENAM30
ENAM33
ENAM93-20
ENAM9321
ENAM93-21
Event label
Faroe Islands margin
G. O. Sars (2003)
GS16-204-18CC
GS2016-204
IMAGES V
Irminger Sea
JM11-19PC
LINK04
LINK17
Marine reservoir ages
Marine Reservoir age transfer-function (Adolphi et al. 2018)
Marion Dufresne (1995)
MD114
MD99-2284
MD99-2289
N. Shetland channel
PC
Piston corer
Reference/source
Reservoir age
standard error
Southern Vøring plateau
Simon, Margit H
Rutledal, Sunniva
Menviel, Laurie
Zolles, Tobias
Haflidason, Haflidi
Born, Andreas
Berben, Sarah M P
Dokken, Trond
Atlantic inflow into the southern Nordic Seas at the onset of the LGM promotes open-ocean conditions and Fennoscandian Ice Sheet growth
topic_facet 14C age
2bis68Fgif
3664N/S
Age
14C AMS
14C calibrated
dated
dated standard error
CALYPSO
Calypso Corer
ENAM30
ENAM33
ENAM93-20
ENAM9321
ENAM93-21
Event label
Faroe Islands margin
G. O. Sars (2003)
GS16-204-18CC
GS2016-204
IMAGES V
Irminger Sea
JM11-19PC
LINK04
LINK17
Marine reservoir ages
Marine Reservoir age transfer-function (Adolphi et al. 2018)
Marion Dufresne (1995)
MD114
MD99-2284
MD99-2289
N. Shetland channel
PC
Piston corer
Reference/source
Reservoir age
standard error
Southern Vøring plateau
description Tephra analysis (FMAZ II-1 tephra marker) on a network of ten marine sediment cores in the northern North Atlantic is presented as well as radiocarbon dates (14C) by Accelerator Mass Spectrometry (AMS) of the same layers. We use published data for the Tephra horizon's identified in the cores together with eight already published 14C AMS dates. In two out of the ten cores we newly 14C AMS date. Here, we add radiocarbon dates to the existing ones from the FMAZ II-1 tephra layer from two key sites in the high-latitude North Atlantic Ocean: offshore southeast Greenland (GS16-204-18CC) and the southern Norwegian Sea (MD99-2284). The purpose of radiocarbon dating the volcanic ash layers in the marine sediments is to derive marine 14C reservoir ages (MRAs) from a spatial network of ten marine sediment cores for investigating past changes in the North Atlantic surface ocean circulation. For the near-surface MRA reconstruction, approximately 1.5 mg of planktic foraminifera specimens (150-500 µm) in pristine condition were picked from the same depth level as the identified FMAZ II-1 tephra marker. The samples were then radiocarbon-dated using AMS 14C measurement procedures at ETH Zürich, Switzerland. There, the samples were processed using a newly developed method (Wacker et al., 2013) involving direct CO2 measurements of ~ 0.5 mg using an AMS facility equipped with a gas ion source. In addition, we performed leaching experiments on the sample surface material using HCl 0.02 M, following procedures in ref. (Hajdas et al., 2004). The AMS 14C dates from all sites were measured on the near-surface planktonic species Neogloboquadrina pachyderma (N. pachyderma) (calcification depth ∼30-200 m (Greco et al., 2019; Simstich et al., 2003)) permitting reconstruction of near-surface water mass properties. We calculated the near-surface MRAs (in 14C years) as the difference between the measured planktonic (N. pachyderma) 14C age and the IntCal20 atmospheric 14C calibration curve (Reimer et al., 2020). The uncertainty of the ...
format Dataset
author Simon, Margit H
Rutledal, Sunniva
Menviel, Laurie
Zolles, Tobias
Haflidason, Haflidi
Born, Andreas
Berben, Sarah M P
Dokken, Trond
author_facet Simon, Margit H
Rutledal, Sunniva
Menviel, Laurie
Zolles, Tobias
Haflidason, Haflidi
Born, Andreas
Berben, Sarah M P
Dokken, Trond
author_sort Simon, Margit H
title Atlantic inflow into the southern Nordic Seas at the onset of the LGM promotes open-ocean conditions and Fennoscandian Ice Sheet growth
title_short Atlantic inflow into the southern Nordic Seas at the onset of the LGM promotes open-ocean conditions and Fennoscandian Ice Sheet growth
title_full Atlantic inflow into the southern Nordic Seas at the onset of the LGM promotes open-ocean conditions and Fennoscandian Ice Sheet growth
title_fullStr Atlantic inflow into the southern Nordic Seas at the onset of the LGM promotes open-ocean conditions and Fennoscandian Ice Sheet growth
title_full_unstemmed Atlantic inflow into the southern Nordic Seas at the onset of the LGM promotes open-ocean conditions and Fennoscandian Ice Sheet growth
title_sort atlantic inflow into the southern nordic seas at the onset of the lgm promotes open-ocean conditions and fennoscandian ice sheet growth
publisher PANGAEA
publishDate 2024
url https://doi.pangaea.de/10.1594/PANGAEA.964056
https://doi.org/10.1594/PANGAEA.964056
op_coverage MEDIAN LATITUDE: 61.860012 * MEDIAN LONGITUDE: -7.623105 * SOUTH-BOUND LATITUDE: 60.030667 * WEST-BOUND LONGITUDE: -40.557500 * NORTH-BOUND LATITUDE: 64.656500 * EAST-BOUND LONGITUDE: 4.209500 * DATE/TIME START: 1999-08-01T00:00:00 * DATE/TIME END: 2018-08-21T00:00:00 * MINIMUM ELEVATION: -2200.0 m * MAXIMUM ELEVATION: -770.0 m
long_lat ENVELOPE(-34.041,-34.041,63.054,63.054)
ENVELOPE(-86.200,-86.200,-77.800,-77.800)
ENVELOPE(4.000,4.000,67.000,67.000)
ENVELOPE(-40.557500,4.209500,64.656500,60.030667)
geographic Norwegian Sea
Faroe Islands
Greenland
Irminger Sea
Reimer
Vøring Plateau
geographic_facet Norwegian Sea
Faroe Islands
Greenland
Irminger Sea
Reimer
Vøring Plateau
genre Faroe Islands
Fennoscandian
Greenland
Ice Sheet
Neogloboquadrina pachyderma
Nordic Seas
North Atlantic
Norwegian Sea
genre_facet Faroe Islands
Fennoscandian
Greenland
Ice Sheet
Neogloboquadrina pachyderma
Nordic Seas
North Atlantic
Norwegian Sea
op_relation Simon, Margit H; Rutledal, Sunniva; Menviel, Laurie; Zolles, Tobias; Haflidason, Haflidi; Born, Andreas; Berben, Sarah M P; Dokken, Trond (2023): Atlantic inflow and low sea-ice cover in the Nordic Seas promoted Fennoscandian Ice Sheet growth during the Last Glacial Maximum. Communications Earth & Environment, 4(1), 385, https://doi.org/10.1038/s43247-023-01032-9
Bäckström, Denise L (2001): Late Quarternay North Atlantic paleoceanographic records and stable isotope variability in four planktonic foraminiferal species. Journal of Foraminiferal Research, 31(1), 25-32, https://doi.org/10.2113/0310025
Becker, Lukas W M; Sejrup, Hans Petter; Hjelstuen, Berit O; Haflidason, Haflidi; Dokken, Trond (2018): Ocean-ice sheet interaction along the SE Nordic Seas margin from 35 to 15 ka BP. Marine Geology, 402, 99-117, https://doi.org/10.1016/j.margeo.2017.09.003
Hoff, Ulrike; Rasmussen, Tine Lander; Stein, Ruediger; Ezat, Mohamed M; Fahl, Kirsten (2016): Sea ice and millennial-scale climate variability in the Nordic seas 90 ka to present. Nature Communications, 7, 10 pp, https://doi.org/10.1038/ncomms12247
Rasmussen, Tine Lander; Thomsen, Erik; van Weering, Tjeerd C E (1998): Cyclic sedimentation on the Faeroe Drift 53-10 ka BP related to climatic variations. In: Stoker, MS; Evans, D; Cramp, A (eds), Geological Processes on Continental Margins: Sedimentation, Mass-Wasting and Stability, Geology Society, London, Special Publications, 129, 255-267
Rasmussen, Tine Lander; Wastegård, Stefan; Kuijpers, Antoon; van Weering, Tjeerd C E; Heinemeier, Jan; Thomsen, Erik (2003): Stratigraphy and distribution of tephra layers in marine sediment cores from the Faeroe Islands, North Atlantic. Marine Geology, 199(3-4), 263-277, https://doi.org/10.1016/S0025-3227(03)00219-6
Wastegård, Stefan; Rasmussen, Tine Lander; Kuijpers, Antoon; Nielsen, Tove; van Weering, Tjeerd C E (2006): Composition and origin of ash zones from Marine Isotope Stages 3 and 2 in the North Atlantic. Quaternary Science Reviews, 25(17-18), 2409-2419, https://doi.org/10.1016/j.quascirev.2006.03.001
https://doi.pangaea.de/10.1594/PANGAEA.964056
https://doi.org/10.1594/PANGAEA.964056
op_rights CC-BY-4.0: Creative Commons Attribution 4.0 International
Access constraints: unrestricted
info:eu-repo/semantics/openAccess
op_doi https://doi.org/10.1594/PANGAEA.96405610.2113/031002510.1016/j.margeo.2017.09.00310.1038/ncomms1224710.1016/S0025-3227(03)00219-610.1016/j.quascirev.2006.03.001
_version_ 1813447748320493568
spelling ftpangaea:oai:pangaea.de:doi:10.1594/PANGAEA.964056 2024-10-20T14:08:33+00:00 Atlantic inflow into the southern Nordic Seas at the onset of the LGM promotes open-ocean conditions and Fennoscandian Ice Sheet growth Simon, Margit H Rutledal, Sunniva Menviel, Laurie Zolles, Tobias Haflidason, Haflidi Born, Andreas Berben, Sarah M P Dokken, Trond MEDIAN LATITUDE: 61.860012 * MEDIAN LONGITUDE: -7.623105 * SOUTH-BOUND LATITUDE: 60.030667 * WEST-BOUND LONGITUDE: -40.557500 * NORTH-BOUND LATITUDE: 64.656500 * EAST-BOUND LONGITUDE: 4.209500 * DATE/TIME START: 1999-08-01T00:00:00 * DATE/TIME END: 2018-08-21T00:00:00 * MINIMUM ELEVATION: -2200.0 m * MAXIMUM ELEVATION: -770.0 m 2024 text/tab-separated-values, 52 data points https://doi.pangaea.de/10.1594/PANGAEA.964056 https://doi.org/10.1594/PANGAEA.964056 en eng PANGAEA Simon, Margit H; Rutledal, Sunniva; Menviel, Laurie; Zolles, Tobias; Haflidason, Haflidi; Born, Andreas; Berben, Sarah M P; Dokken, Trond (2023): Atlantic inflow and low sea-ice cover in the Nordic Seas promoted Fennoscandian Ice Sheet growth during the Last Glacial Maximum. Communications Earth & Environment, 4(1), 385, https://doi.org/10.1038/s43247-023-01032-9 Bäckström, Denise L (2001): Late Quarternay North Atlantic paleoceanographic records and stable isotope variability in four planktonic foraminiferal species. Journal of Foraminiferal Research, 31(1), 25-32, https://doi.org/10.2113/0310025 Becker, Lukas W M; Sejrup, Hans Petter; Hjelstuen, Berit O; Haflidason, Haflidi; Dokken, Trond (2018): Ocean-ice sheet interaction along the SE Nordic Seas margin from 35 to 15 ka BP. Marine Geology, 402, 99-117, https://doi.org/10.1016/j.margeo.2017.09.003 Hoff, Ulrike; Rasmussen, Tine Lander; Stein, Ruediger; Ezat, Mohamed M; Fahl, Kirsten (2016): Sea ice and millennial-scale climate variability in the Nordic seas 90 ka to present. Nature Communications, 7, 10 pp, https://doi.org/10.1038/ncomms12247 Rasmussen, Tine Lander; Thomsen, Erik; van Weering, Tjeerd C E (1998): Cyclic sedimentation on the Faeroe Drift 53-10 ka BP related to climatic variations. In: Stoker, MS; Evans, D; Cramp, A (eds), Geological Processes on Continental Margins: Sedimentation, Mass-Wasting and Stability, Geology Society, London, Special Publications, 129, 255-267 Rasmussen, Tine Lander; Wastegård, Stefan; Kuijpers, Antoon; van Weering, Tjeerd C E; Heinemeier, Jan; Thomsen, Erik (2003): Stratigraphy and distribution of tephra layers in marine sediment cores from the Faeroe Islands, North Atlantic. Marine Geology, 199(3-4), 263-277, https://doi.org/10.1016/S0025-3227(03)00219-6 Wastegård, Stefan; Rasmussen, Tine Lander; Kuijpers, Antoon; Nielsen, Tove; van Weering, Tjeerd C E (2006): Composition and origin of ash zones from Marine Isotope Stages 3 and 2 in the North Atlantic. Quaternary Science Reviews, 25(17-18), 2409-2419, https://doi.org/10.1016/j.quascirev.2006.03.001 https://doi.pangaea.de/10.1594/PANGAEA.964056 https://doi.org/10.1594/PANGAEA.964056 CC-BY-4.0: Creative Commons Attribution 4.0 International Access constraints: unrestricted info:eu-repo/semantics/openAccess 14C age 2bis68Fgif 3664N/S Age 14C AMS 14C calibrated dated dated standard error CALYPSO Calypso Corer ENAM30 ENAM33 ENAM93-20 ENAM9321 ENAM93-21 Event label Faroe Islands margin G. O. Sars (2003) GS16-204-18CC GS2016-204 IMAGES V Irminger Sea JM11-19PC LINK04 LINK17 Marine reservoir ages Marine Reservoir age transfer-function (Adolphi et al. 2018) Marion Dufresne (1995) MD114 MD99-2284 MD99-2289 N. Shetland channel PC Piston corer Reference/source Reservoir age standard error Southern Vøring plateau dataset 2024 ftpangaea https://doi.org/10.1594/PANGAEA.96405610.2113/031002510.1016/j.margeo.2017.09.00310.1038/ncomms1224710.1016/S0025-3227(03)00219-610.1016/j.quascirev.2006.03.001 2024-09-25T00:03:38Z Tephra analysis (FMAZ II-1 tephra marker) on a network of ten marine sediment cores in the northern North Atlantic is presented as well as radiocarbon dates (14C) by Accelerator Mass Spectrometry (AMS) of the same layers. We use published data for the Tephra horizon's identified in the cores together with eight already published 14C AMS dates. In two out of the ten cores we newly 14C AMS date. Here, we add radiocarbon dates to the existing ones from the FMAZ II-1 tephra layer from two key sites in the high-latitude North Atlantic Ocean: offshore southeast Greenland (GS16-204-18CC) and the southern Norwegian Sea (MD99-2284). The purpose of radiocarbon dating the volcanic ash layers in the marine sediments is to derive marine 14C reservoir ages (MRAs) from a spatial network of ten marine sediment cores for investigating past changes in the North Atlantic surface ocean circulation. For the near-surface MRA reconstruction, approximately 1.5 mg of planktic foraminifera specimens (150-500 µm) in pristine condition were picked from the same depth level as the identified FMAZ II-1 tephra marker. The samples were then radiocarbon-dated using AMS 14C measurement procedures at ETH Zürich, Switzerland. There, the samples were processed using a newly developed method (Wacker et al., 2013) involving direct CO2 measurements of ~ 0.5 mg using an AMS facility equipped with a gas ion source. In addition, we performed leaching experiments on the sample surface material using HCl 0.02 M, following procedures in ref. (Hajdas et al., 2004). The AMS 14C dates from all sites were measured on the near-surface planktonic species Neogloboquadrina pachyderma (N. pachyderma) (calcification depth ∼30-200 m (Greco et al., 2019; Simstich et al., 2003)) permitting reconstruction of near-surface water mass properties. We calculated the near-surface MRAs (in 14C years) as the difference between the measured planktonic (N. pachyderma) 14C age and the IntCal20 atmospheric 14C calibration curve (Reimer et al., 2020). The uncertainty of the ... Dataset Faroe Islands Fennoscandian Greenland Ice Sheet Neogloboquadrina pachyderma Nordic Seas North Atlantic Norwegian Sea PANGAEA - Data Publisher for Earth & Environmental Science Norwegian Sea Faroe Islands Greenland Irminger Sea ENVELOPE(-34.041,-34.041,63.054,63.054) Reimer ENVELOPE(-86.200,-86.200,-77.800,-77.800) Vøring Plateau ENVELOPE(4.000,4.000,67.000,67.000) ENVELOPE(-40.557500,4.209500,64.656500,60.030667)