Bulk size-resolved chemical composition and mass concentration of non-refractory submicron aerosols measured in the Swiss container during MOSAiC 2019/2020
This dataset contains the bulk size-resolved chemical composition and mass concentration of non-refractory submicron aerosols (NR-PM1) measured during the MOSAiC expedition from October 2019 to July 2020. These include the mass concentrations of sulfate (SO42-), nitrate (NO3-), ammonium (NH4+), chlo...
Main Authors: | , , , , , , , , , |
---|---|
Format: | Dataset |
Language: | English |
Published: |
PANGAEA
2023
|
Subjects: | |
Online Access: | https://doi.pangaea.de/10.1594/PANGAEA.961009 https://doi.org/10.1594/PANGAEA.961009 |
Summary: | This dataset contains the bulk size-resolved chemical composition and mass concentration of non-refractory submicron aerosols (NR-PM1) measured during the MOSAiC expedition from October 2019 to July 2020. These include the mass concentrations of sulfate (SO42-), nitrate (NO3-), ammonium (NH4+), chloride (Chl), and organics (Org). The measurements were performed in the Swiss container on the D-deck of Research Vessel Polarstern, using a commercial High-Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS, Aerodyne Research, Inc.). One can refer to existing literature (e.g., DeCarlo et al. (2006) and Canagaratna et al. (2007)) for detailed description, functioning principles and field deployment procedures of the AMS. The instrument was located behind an automated valve, which switched hourly between a total and an interstitial air inlet, with upper cutoff sizes of 40 and 1 µm respectively (Heutte et al. (Submitted), Beck et al. (2022), and Dada et al. (2022)). Ambient air was hence sampled alternately every hour from the total and interstitial inlets into an aerodynamic lens with a 1 µm critical orifice and a flow of 0.07 L/min. All data were processed using SQUIRREL v1.65B and PIKA v1.25B within the IGOR Pro v9.00 software. This was done separately for the three distinct periods of available measurements, October to December 2019, March to May, and June to July 2020, as the instrument was each time in a different state (after long down times related to turbo pump failures). Regular on-site calibrations using monodisperse, number concentration-defined, ammonium nitrate (NH4NO3) and ammonium sulfate ((NH4)2SO4) particles were performed to determine the ionization efficiency of NO3- and relative ionization efficiencies of NH4+ and SO42- (Jimenez et al. (2003) and Allan et al. (2003)). An airbeam correction factor was applied to the dataset, along with a time and composition-dependent collection efficiency (CDCE, Middlebrook et al. (2012)). Several times per month, zero measurements were performed using ... |
---|