Seawater carbonate chemistry and biomechanical properties of the skeletal plates of the sea urchin Paracentrotus lividus (Lamarck, 1816)
Sea urchins, ecologically important herbivores of shallow subtidal temperate reefs, are considered particularly threatened in a future ocean acidification scenario, since their carbonate structures (skeleton and grazing apparatus) are made up of the very soluble high-magnesium calcite, particularly...
Main Authors: | , , , , |
---|---|
Format: | Dataset |
Language: | English |
Published: |
PANGAEA
2023
|
Subjects: | |
Online Access: | https://doi.pangaea.de/10.1594/PANGAEA.960351 https://doi.org/10.1594/PANGAEA.960351 |
id |
ftpangaea:oai:pangaea.de:doi:10.1594/PANGAEA.960351 |
---|---|
record_format |
openpolar |
spelling |
ftpangaea:oai:pangaea.de:doi:10.1594/PANGAEA.960351 2024-09-15T18:28:06+00:00 Seawater carbonate chemistry and biomechanical properties of the skeletal plates of the sea urchin Paracentrotus lividus (Lamarck, 1816) Asnaghi, Valentina Collard, Marie Mangialajo, Luisa Gattuso, Jean-Pierre Dubois, Philippe 2023 text/tab-separated-values, 3600 data points https://doi.pangaea.de/10.1594/PANGAEA.960351 https://doi.org/10.1594/PANGAEA.960351 en eng PANGAEA Asnaghi, Valentina; Collard, Marie; Mangialajo, Luisa; Gattuso, Jean-Pierre; Dubois, Philippe (2019): Bottom-up effects on biomechanical properties of the skeletal plates of the sea urchin Paracentrotus lividus (Lamarck, 1816) in an acidified ocean scenario. Marine Environmental Research, 144, 56-61, https://doi.org/10.1016/j.marenvres.2018.12.002 Gattuso, Jean-Pierre; Epitalon, Jean-Marie; Lavigne, Héloïse; Orr, James; Gentili, Bernard; Hagens, Mathilde; Hofmann, Andreas; Mueller, Jens-Daniel; Proye, Aurélien; Rae, James; Soetaert, Karline (2022): seacarb: seawater carbonate chemistry with R. R package version 3.3.1. https://cran.r-project.org/web/packages/seacarb/index.html https://doi.pangaea.de/10.1594/PANGAEA.960351 https://doi.org/10.1594/PANGAEA.960351 CC-BY-4.0: Creative Commons Attribution 4.0 International Access constraints: unrestricted info:eu-repo/semantics/openAccess Alkalinity total standard deviation Animalia Aragonite saturation state Area Benthic animals Benthos Bicarbonate ion Calcite saturation state Calculated using seacarb after Nisumaa et al. (2010) Carbon inorganic dissolved Carbonate ion Carbonate system computation flag Carbon dioxide Containers and aquaria (20-1000 L or < 1 m**2) Diet Echinodermata Force Fugacity of carbon dioxide (water) at sea surface temperature (wet air) Individuals Laboratory experiment Laboratory strains Not applicable OA-ICC Ocean Acidification International Coordination Centre Other Other studied parameter or process Paracentrotus lividus Partial pressure of carbon dioxide (water) at sea surface temperature (wet air) pH Plate Salinity Single species Species unique identification unique identification (Semantic URI) unique identification (URI) Temperature water dataset 2023 ftpangaea https://doi.org/10.1594/PANGAEA.96035110.1016/j.marenvres.2018.12.002 2024-07-24T02:31:35Z Sea urchins, ecologically important herbivores of shallow subtidal temperate reefs, are considered particularly threatened in a future ocean acidification scenario, since their carbonate structures (skeleton and grazing apparatus) are made up of the very soluble high-magnesium calcite, particularly sensitive to a decrease in pH. The biomechanical properties of their skeletal structures are of great importance for their individual fitness, because the skeleton provides the means for locomotion, grazing and protection from predators. Sea urchin skeleton is composed of discrete calcite plates attached to each other at sutures by organic ligaments. The present study addressed the fate of the sea urchin Paracentrotus lividus (Lamarck, 1816) skeleton in acidified oceans, taking into account the combined effect of reduced pH and macroalgal diet, with potential cascading consequences at the ecosystem level. A breaking test on individual plates of juvenile specimens fed different macroalgal diets has been performed, teasing apart plate strength and stiffness from general robustness. Results showed no direct short-term effect of a decrease in seawater pH nor of the macroalgal diet on single plate mechanical properties. Nevertheless, results from apical plates, the ones presumably formed during the experimental period, provided an indication of a possible diet-mediated response, with sea urchins fed the more calcified macroalga sustaining higher forces before breakage than the one fed the non-calcified algae. This, on the long term, may produce bottom-up effects on sea urchins, leading to potential shifts in the ecosystem equilibrium under an ocean acidified scenario. Dataset Ocean acidification PANGAEA - Data Publisher for Earth & Environmental Science |
institution |
Open Polar |
collection |
PANGAEA - Data Publisher for Earth & Environmental Science |
op_collection_id |
ftpangaea |
language |
English |
topic |
Alkalinity total standard deviation Animalia Aragonite saturation state Area Benthic animals Benthos Bicarbonate ion Calcite saturation state Calculated using seacarb after Nisumaa et al. (2010) Carbon inorganic dissolved Carbonate ion Carbonate system computation flag Carbon dioxide Containers and aquaria (20-1000 L or < 1 m**2) Diet Echinodermata Force Fugacity of carbon dioxide (water) at sea surface temperature (wet air) Individuals Laboratory experiment Laboratory strains Not applicable OA-ICC Ocean Acidification International Coordination Centre Other Other studied parameter or process Paracentrotus lividus Partial pressure of carbon dioxide (water) at sea surface temperature (wet air) pH Plate Salinity Single species Species unique identification unique identification (Semantic URI) unique identification (URI) Temperature water |
spellingShingle |
Alkalinity total standard deviation Animalia Aragonite saturation state Area Benthic animals Benthos Bicarbonate ion Calcite saturation state Calculated using seacarb after Nisumaa et al. (2010) Carbon inorganic dissolved Carbonate ion Carbonate system computation flag Carbon dioxide Containers and aquaria (20-1000 L or < 1 m**2) Diet Echinodermata Force Fugacity of carbon dioxide (water) at sea surface temperature (wet air) Individuals Laboratory experiment Laboratory strains Not applicable OA-ICC Ocean Acidification International Coordination Centre Other Other studied parameter or process Paracentrotus lividus Partial pressure of carbon dioxide (water) at sea surface temperature (wet air) pH Plate Salinity Single species Species unique identification unique identification (Semantic URI) unique identification (URI) Temperature water Asnaghi, Valentina Collard, Marie Mangialajo, Luisa Gattuso, Jean-Pierre Dubois, Philippe Seawater carbonate chemistry and biomechanical properties of the skeletal plates of the sea urchin Paracentrotus lividus (Lamarck, 1816) |
topic_facet |
Alkalinity total standard deviation Animalia Aragonite saturation state Area Benthic animals Benthos Bicarbonate ion Calcite saturation state Calculated using seacarb after Nisumaa et al. (2010) Carbon inorganic dissolved Carbonate ion Carbonate system computation flag Carbon dioxide Containers and aquaria (20-1000 L or < 1 m**2) Diet Echinodermata Force Fugacity of carbon dioxide (water) at sea surface temperature (wet air) Individuals Laboratory experiment Laboratory strains Not applicable OA-ICC Ocean Acidification International Coordination Centre Other Other studied parameter or process Paracentrotus lividus Partial pressure of carbon dioxide (water) at sea surface temperature (wet air) pH Plate Salinity Single species Species unique identification unique identification (Semantic URI) unique identification (URI) Temperature water |
description |
Sea urchins, ecologically important herbivores of shallow subtidal temperate reefs, are considered particularly threatened in a future ocean acidification scenario, since their carbonate structures (skeleton and grazing apparatus) are made up of the very soluble high-magnesium calcite, particularly sensitive to a decrease in pH. The biomechanical properties of their skeletal structures are of great importance for their individual fitness, because the skeleton provides the means for locomotion, grazing and protection from predators. Sea urchin skeleton is composed of discrete calcite plates attached to each other at sutures by organic ligaments. The present study addressed the fate of the sea urchin Paracentrotus lividus (Lamarck, 1816) skeleton in acidified oceans, taking into account the combined effect of reduced pH and macroalgal diet, with potential cascading consequences at the ecosystem level. A breaking test on individual plates of juvenile specimens fed different macroalgal diets has been performed, teasing apart plate strength and stiffness from general robustness. Results showed no direct short-term effect of a decrease in seawater pH nor of the macroalgal diet on single plate mechanical properties. Nevertheless, results from apical plates, the ones presumably formed during the experimental period, provided an indication of a possible diet-mediated response, with sea urchins fed the more calcified macroalga sustaining higher forces before breakage than the one fed the non-calcified algae. This, on the long term, may produce bottom-up effects on sea urchins, leading to potential shifts in the ecosystem equilibrium under an ocean acidified scenario. |
format |
Dataset |
author |
Asnaghi, Valentina Collard, Marie Mangialajo, Luisa Gattuso, Jean-Pierre Dubois, Philippe |
author_facet |
Asnaghi, Valentina Collard, Marie Mangialajo, Luisa Gattuso, Jean-Pierre Dubois, Philippe |
author_sort |
Asnaghi, Valentina |
title |
Seawater carbonate chemistry and biomechanical properties of the skeletal plates of the sea urchin Paracentrotus lividus (Lamarck, 1816) |
title_short |
Seawater carbonate chemistry and biomechanical properties of the skeletal plates of the sea urchin Paracentrotus lividus (Lamarck, 1816) |
title_full |
Seawater carbonate chemistry and biomechanical properties of the skeletal plates of the sea urchin Paracentrotus lividus (Lamarck, 1816) |
title_fullStr |
Seawater carbonate chemistry and biomechanical properties of the skeletal plates of the sea urchin Paracentrotus lividus (Lamarck, 1816) |
title_full_unstemmed |
Seawater carbonate chemistry and biomechanical properties of the skeletal plates of the sea urchin Paracentrotus lividus (Lamarck, 1816) |
title_sort |
seawater carbonate chemistry and biomechanical properties of the skeletal plates of the sea urchin paracentrotus lividus (lamarck, 1816) |
publisher |
PANGAEA |
publishDate |
2023 |
url |
https://doi.pangaea.de/10.1594/PANGAEA.960351 https://doi.org/10.1594/PANGAEA.960351 |
genre |
Ocean acidification |
genre_facet |
Ocean acidification |
op_relation |
Asnaghi, Valentina; Collard, Marie; Mangialajo, Luisa; Gattuso, Jean-Pierre; Dubois, Philippe (2019): Bottom-up effects on biomechanical properties of the skeletal plates of the sea urchin Paracentrotus lividus (Lamarck, 1816) in an acidified ocean scenario. Marine Environmental Research, 144, 56-61, https://doi.org/10.1016/j.marenvres.2018.12.002 Gattuso, Jean-Pierre; Epitalon, Jean-Marie; Lavigne, Héloïse; Orr, James; Gentili, Bernard; Hagens, Mathilde; Hofmann, Andreas; Mueller, Jens-Daniel; Proye, Aurélien; Rae, James; Soetaert, Karline (2022): seacarb: seawater carbonate chemistry with R. R package version 3.3.1. https://cran.r-project.org/web/packages/seacarb/index.html https://doi.pangaea.de/10.1594/PANGAEA.960351 https://doi.org/10.1594/PANGAEA.960351 |
op_rights |
CC-BY-4.0: Creative Commons Attribution 4.0 International Access constraints: unrestricted info:eu-repo/semantics/openAccess |
op_doi |
https://doi.org/10.1594/PANGAEA.96035110.1016/j.marenvres.2018.12.002 |
_version_ |
1810469418799464448 |