Seawater carbonate chemistry and biomechanical properties of the skeletal plates of the sea urchin Paracentrotus lividus (Lamarck, 1816)

Sea urchins, ecologically important herbivores of shallow subtidal temperate reefs, are considered particularly threatened in a future ocean acidification scenario, since their carbonate structures (skeleton and grazing apparatus) are made up of the very soluble high-magnesium calcite, particularly...

Full description

Bibliographic Details
Main Authors: Asnaghi, Valentina, Collard, Marie, Mangialajo, Luisa, Gattuso, Jean-Pierre, Dubois, Philippe
Format: Dataset
Language:English
Published: PANGAEA 2023
Subjects:
pH
Online Access:https://doi.pangaea.de/10.1594/PANGAEA.960351
https://doi.org/10.1594/PANGAEA.960351
id ftpangaea:oai:pangaea.de:doi:10.1594/PANGAEA.960351
record_format openpolar
spelling ftpangaea:oai:pangaea.de:doi:10.1594/PANGAEA.960351 2024-09-15T18:28:06+00:00 Seawater carbonate chemistry and biomechanical properties of the skeletal plates of the sea urchin Paracentrotus lividus (Lamarck, 1816) Asnaghi, Valentina Collard, Marie Mangialajo, Luisa Gattuso, Jean-Pierre Dubois, Philippe 2023 text/tab-separated-values, 3600 data points https://doi.pangaea.de/10.1594/PANGAEA.960351 https://doi.org/10.1594/PANGAEA.960351 en eng PANGAEA Asnaghi, Valentina; Collard, Marie; Mangialajo, Luisa; Gattuso, Jean-Pierre; Dubois, Philippe (2019): Bottom-up effects on biomechanical properties of the skeletal plates of the sea urchin Paracentrotus lividus (Lamarck, 1816) in an acidified ocean scenario. Marine Environmental Research, 144, 56-61, https://doi.org/10.1016/j.marenvres.2018.12.002 Gattuso, Jean-Pierre; Epitalon, Jean-Marie; Lavigne, Héloïse; Orr, James; Gentili, Bernard; Hagens, Mathilde; Hofmann, Andreas; Mueller, Jens-Daniel; Proye, Aurélien; Rae, James; Soetaert, Karline (2022): seacarb: seawater carbonate chemistry with R. R package version 3.3.1. https://cran.r-project.org/web/packages/seacarb/index.html https://doi.pangaea.de/10.1594/PANGAEA.960351 https://doi.org/10.1594/PANGAEA.960351 CC-BY-4.0: Creative Commons Attribution 4.0 International Access constraints: unrestricted info:eu-repo/semantics/openAccess Alkalinity total standard deviation Animalia Aragonite saturation state Area Benthic animals Benthos Bicarbonate ion Calcite saturation state Calculated using seacarb after Nisumaa et al. (2010) Carbon inorganic dissolved Carbonate ion Carbonate system computation flag Carbon dioxide Containers and aquaria (20-1000 L or < 1 m**2) Diet Echinodermata Force Fugacity of carbon dioxide (water) at sea surface temperature (wet air) Individuals Laboratory experiment Laboratory strains Not applicable OA-ICC Ocean Acidification International Coordination Centre Other Other studied parameter or process Paracentrotus lividus Partial pressure of carbon dioxide (water) at sea surface temperature (wet air) pH Plate Salinity Single species Species unique identification unique identification (Semantic URI) unique identification (URI) Temperature water dataset 2023 ftpangaea https://doi.org/10.1594/PANGAEA.96035110.1016/j.marenvres.2018.12.002 2024-07-24T02:31:35Z Sea urchins, ecologically important herbivores of shallow subtidal temperate reefs, are considered particularly threatened in a future ocean acidification scenario, since their carbonate structures (skeleton and grazing apparatus) are made up of the very soluble high-magnesium calcite, particularly sensitive to a decrease in pH. The biomechanical properties of their skeletal structures are of great importance for their individual fitness, because the skeleton provides the means for locomotion, grazing and protection from predators. Sea urchin skeleton is composed of discrete calcite plates attached to each other at sutures by organic ligaments. The present study addressed the fate of the sea urchin Paracentrotus lividus (Lamarck, 1816) skeleton in acidified oceans, taking into account the combined effect of reduced pH and macroalgal diet, with potential cascading consequences at the ecosystem level. A breaking test on individual plates of juvenile specimens fed different macroalgal diets has been performed, teasing apart plate strength and stiffness from general robustness. Results showed no direct short-term effect of a decrease in seawater pH nor of the macroalgal diet on single plate mechanical properties. Nevertheless, results from apical plates, the ones presumably formed during the experimental period, provided an indication of a possible diet-mediated response, with sea urchins fed the more calcified macroalga sustaining higher forces before breakage than the one fed the non-calcified algae. This, on the long term, may produce bottom-up effects on sea urchins, leading to potential shifts in the ecosystem equilibrium under an ocean acidified scenario. Dataset Ocean acidification PANGAEA - Data Publisher for Earth & Environmental Science
institution Open Polar
collection PANGAEA - Data Publisher for Earth & Environmental Science
op_collection_id ftpangaea
language English
topic Alkalinity
total
standard deviation
Animalia
Aragonite saturation state
Area
Benthic animals
Benthos
Bicarbonate ion
Calcite saturation state
Calculated using seacarb after Nisumaa et al. (2010)
Carbon
inorganic
dissolved
Carbonate ion
Carbonate system computation flag
Carbon dioxide
Containers and aquaria (20-1000 L or < 1 m**2)
Diet
Echinodermata
Force
Fugacity of carbon dioxide (water) at sea surface temperature (wet air)
Individuals
Laboratory experiment
Laboratory strains
Not applicable
OA-ICC
Ocean Acidification International Coordination Centre
Other
Other studied parameter or process
Paracentrotus lividus
Partial pressure of carbon dioxide (water) at sea surface temperature (wet air)
pH
Plate
Salinity
Single species
Species
unique identification
unique identification (Semantic URI)
unique identification (URI)
Temperature
water
spellingShingle Alkalinity
total
standard deviation
Animalia
Aragonite saturation state
Area
Benthic animals
Benthos
Bicarbonate ion
Calcite saturation state
Calculated using seacarb after Nisumaa et al. (2010)
Carbon
inorganic
dissolved
Carbonate ion
Carbonate system computation flag
Carbon dioxide
Containers and aquaria (20-1000 L or < 1 m**2)
Diet
Echinodermata
Force
Fugacity of carbon dioxide (water) at sea surface temperature (wet air)
Individuals
Laboratory experiment
Laboratory strains
Not applicable
OA-ICC
Ocean Acidification International Coordination Centre
Other
Other studied parameter or process
Paracentrotus lividus
Partial pressure of carbon dioxide (water) at sea surface temperature (wet air)
pH
Plate
Salinity
Single species
Species
unique identification
unique identification (Semantic URI)
unique identification (URI)
Temperature
water
Asnaghi, Valentina
Collard, Marie
Mangialajo, Luisa
Gattuso, Jean-Pierre
Dubois, Philippe
Seawater carbonate chemistry and biomechanical properties of the skeletal plates of the sea urchin Paracentrotus lividus (Lamarck, 1816)
topic_facet Alkalinity
total
standard deviation
Animalia
Aragonite saturation state
Area
Benthic animals
Benthos
Bicarbonate ion
Calcite saturation state
Calculated using seacarb after Nisumaa et al. (2010)
Carbon
inorganic
dissolved
Carbonate ion
Carbonate system computation flag
Carbon dioxide
Containers and aquaria (20-1000 L or < 1 m**2)
Diet
Echinodermata
Force
Fugacity of carbon dioxide (water) at sea surface temperature (wet air)
Individuals
Laboratory experiment
Laboratory strains
Not applicable
OA-ICC
Ocean Acidification International Coordination Centre
Other
Other studied parameter or process
Paracentrotus lividus
Partial pressure of carbon dioxide (water) at sea surface temperature (wet air)
pH
Plate
Salinity
Single species
Species
unique identification
unique identification (Semantic URI)
unique identification (URI)
Temperature
water
description Sea urchins, ecologically important herbivores of shallow subtidal temperate reefs, are considered particularly threatened in a future ocean acidification scenario, since their carbonate structures (skeleton and grazing apparatus) are made up of the very soluble high-magnesium calcite, particularly sensitive to a decrease in pH. The biomechanical properties of their skeletal structures are of great importance for their individual fitness, because the skeleton provides the means for locomotion, grazing and protection from predators. Sea urchin skeleton is composed of discrete calcite plates attached to each other at sutures by organic ligaments. The present study addressed the fate of the sea urchin Paracentrotus lividus (Lamarck, 1816) skeleton in acidified oceans, taking into account the combined effect of reduced pH and macroalgal diet, with potential cascading consequences at the ecosystem level. A breaking test on individual plates of juvenile specimens fed different macroalgal diets has been performed, teasing apart plate strength and stiffness from general robustness. Results showed no direct short-term effect of a decrease in seawater pH nor of the macroalgal diet on single plate mechanical properties. Nevertheless, results from apical plates, the ones presumably formed during the experimental period, provided an indication of a possible diet-mediated response, with sea urchins fed the more calcified macroalga sustaining higher forces before breakage than the one fed the non-calcified algae. This, on the long term, may produce bottom-up effects on sea urchins, leading to potential shifts in the ecosystem equilibrium under an ocean acidified scenario.
format Dataset
author Asnaghi, Valentina
Collard, Marie
Mangialajo, Luisa
Gattuso, Jean-Pierre
Dubois, Philippe
author_facet Asnaghi, Valentina
Collard, Marie
Mangialajo, Luisa
Gattuso, Jean-Pierre
Dubois, Philippe
author_sort Asnaghi, Valentina
title Seawater carbonate chemistry and biomechanical properties of the skeletal plates of the sea urchin Paracentrotus lividus (Lamarck, 1816)
title_short Seawater carbonate chemistry and biomechanical properties of the skeletal plates of the sea urchin Paracentrotus lividus (Lamarck, 1816)
title_full Seawater carbonate chemistry and biomechanical properties of the skeletal plates of the sea urchin Paracentrotus lividus (Lamarck, 1816)
title_fullStr Seawater carbonate chemistry and biomechanical properties of the skeletal plates of the sea urchin Paracentrotus lividus (Lamarck, 1816)
title_full_unstemmed Seawater carbonate chemistry and biomechanical properties of the skeletal plates of the sea urchin Paracentrotus lividus (Lamarck, 1816)
title_sort seawater carbonate chemistry and biomechanical properties of the skeletal plates of the sea urchin paracentrotus lividus (lamarck, 1816)
publisher PANGAEA
publishDate 2023
url https://doi.pangaea.de/10.1594/PANGAEA.960351
https://doi.org/10.1594/PANGAEA.960351
genre Ocean acidification
genre_facet Ocean acidification
op_relation Asnaghi, Valentina; Collard, Marie; Mangialajo, Luisa; Gattuso, Jean-Pierre; Dubois, Philippe (2019): Bottom-up effects on biomechanical properties of the skeletal plates of the sea urchin Paracentrotus lividus (Lamarck, 1816) in an acidified ocean scenario. Marine Environmental Research, 144, 56-61, https://doi.org/10.1016/j.marenvres.2018.12.002
Gattuso, Jean-Pierre; Epitalon, Jean-Marie; Lavigne, Héloïse; Orr, James; Gentili, Bernard; Hagens, Mathilde; Hofmann, Andreas; Mueller, Jens-Daniel; Proye, Aurélien; Rae, James; Soetaert, Karline (2022): seacarb: seawater carbonate chemistry with R. R package version 3.3.1. https://cran.r-project.org/web/packages/seacarb/index.html
https://doi.pangaea.de/10.1594/PANGAEA.960351
https://doi.org/10.1594/PANGAEA.960351
op_rights CC-BY-4.0: Creative Commons Attribution 4.0 International
Access constraints: unrestricted
info:eu-repo/semantics/openAccess
op_doi https://doi.org/10.1594/PANGAEA.96035110.1016/j.marenvres.2018.12.002
_version_ 1810469418799464448