Data set for modeling methane fluxes of Beringian coastal wetlands

For upscaling CH4 flux estimates in Beringia during the past 20,000 years, we collected 231 present-day CH4 fluxes from coastal wetlands in the Northern Hemisphere. We combined our own flux data (27 plot measurements) from the Kenai Peninsula, Alaska with previously published data. Data were compile...

Full description

Bibliographic Details
Main Authors: Fuchs, Matthias, Jones, Miriam C, Gowan, Evan J, Frolking, Steve, Walter Anthony, Katey M, Grosse, Guido, Jones, Benjamin M, O'Donnel, Jonathan, Brosius, Laura Susan, Treat, Claire C
Format: Dataset
Language:English
Published: PANGAEA 2024
Subjects:
Online Access:https://doi.pangaea.de/10.1594/PANGAEA.960160
https://doi.org/10.1594/PANGAEA.960160
id ftpangaea:oai:pangaea.de:doi:10.1594/PANGAEA.960160
record_format openpolar
institution Open Polar
collection PANGAEA - Data Publisher for Earth & Environmental Science
op_collection_id ftpangaea
language English
topic Analytical method
Arctic
Beringia
Class
Comment
FluxWIN
LATITUDE
Location
LONGITUDE
Major vegetation
Methane
flux
ORDINAL NUMBER
Original unit
Original value
paleoreconstruction
Persistent Identifier
Reference/source
sea-level rise
Site
The role of non-growing season processes in the methane and nitrous oxide budgets in pristine northern ecosystems
Type
spellingShingle Analytical method
Arctic
Beringia
Class
Comment
FluxWIN
LATITUDE
Location
LONGITUDE
Major vegetation
Methane
flux
ORDINAL NUMBER
Original unit
Original value
paleoreconstruction
Persistent Identifier
Reference/source
sea-level rise
Site
The role of non-growing season processes in the methane and nitrous oxide budgets in pristine northern ecosystems
Type
Fuchs, Matthias
Jones, Miriam C
Gowan, Evan J
Frolking, Steve
Walter Anthony, Katey M
Grosse, Guido
Jones, Benjamin M
O'Donnel, Jonathan
Brosius, Laura Susan
Treat, Claire C
Data set for modeling methane fluxes of Beringian coastal wetlands
topic_facet Analytical method
Arctic
Beringia
Class
Comment
FluxWIN
LATITUDE
Location
LONGITUDE
Major vegetation
Methane
flux
ORDINAL NUMBER
Original unit
Original value
paleoreconstruction
Persistent Identifier
Reference/source
sea-level rise
Site
The role of non-growing season processes in the methane and nitrous oxide budgets in pristine northern ecosystems
Type
description For upscaling CH4 flux estimates in Beringia during the past 20,000 years, we collected 231 present-day CH4 fluxes from coastal wetlands in the Northern Hemisphere. We combined our own flux data (27 plot measurements) from the Kenai Peninsula, Alaska with previously published data. Data were compiled from different sources (e.g. Treat et al. 2018; 2021; Poffenbarger et al. 2011; Liikanen et al. 2009; Holmquist et al. 2018; Kuhn et al. 2021). CH4 fluxes from the literature were calculated in g CH4 m-2 yr-1 for the growing season, which we set to 153 days (May to September). Each CH4 data entry was harmonized by classifying it into one of the six wetland types Saltwater, tidal regularly flooded, Temporarily irregularly flooded, Permanently to semi-permanently flooded, Seasonally flooded, Non-tidal saturated, Water-body. This resulted in a stratified pool of CH4 fluxes and allowed a bootstrapping approach to estimate uncertainty in the CH4 fluxes for Beringian coastal wetlands based on the variability of CH4 fluxes associated to the different wetland types. For each of 258 sites, the dataset includes a site description, calculated CH4 flux from this research, wetland type, wetland class, method of CH4 measurement, major vegetation type, site location, the originally published CH4 value ("orig val") in the referenced paper, original units of measurement, citation and persistent identifier for the original data source, and comments. For some of the data points no coordinates information was given in the original publication, therefore the latitude and longitude fields were left blank.
format Dataset
author Fuchs, Matthias
Jones, Miriam C
Gowan, Evan J
Frolking, Steve
Walter Anthony, Katey M
Grosse, Guido
Jones, Benjamin M
O'Donnel, Jonathan
Brosius, Laura Susan
Treat, Claire C
author_facet Fuchs, Matthias
Jones, Miriam C
Gowan, Evan J
Frolking, Steve
Walter Anthony, Katey M
Grosse, Guido
Jones, Benjamin M
O'Donnel, Jonathan
Brosius, Laura Susan
Treat, Claire C
author_sort Fuchs, Matthias
title Data set for modeling methane fluxes of Beringian coastal wetlands
title_short Data set for modeling methane fluxes of Beringian coastal wetlands
title_full Data set for modeling methane fluxes of Beringian coastal wetlands
title_fullStr Data set for modeling methane fluxes of Beringian coastal wetlands
title_full_unstemmed Data set for modeling methane fluxes of Beringian coastal wetlands
title_sort data set for modeling methane fluxes of beringian coastal wetlands
publisher PANGAEA
publishDate 2024
url https://doi.pangaea.de/10.1594/PANGAEA.960160
https://doi.org/10.1594/PANGAEA.960160
op_coverage MEDIAN LATITUDE: 57.292354 * MEDIAN LONGITUDE: -54.390987 * SOUTH-BOUND LATITUDE: 29.501330 * WEST-BOUND LONGITUDE: -162.015300 * NORTH-BOUND LATITUDE: 74.500000 * EAST-BOUND LONGITUDE: 161.200000 * MINIMUM ORDINAL NUMBER: 1 * MAXIMUM ORDINAL NUMBER: 258
long_lat ENVELOPE(26.967,26.967,65.533,65.533)
ENVELOPE(-162.015300,161.200000,74.500000,29.501330)
geographic Arctic
Liikanen
geographic_facet Arctic
Liikanen
genre Arctic
Arctic
Boreal Environment Research
Alaska
Beringia
genre_facet Arctic
Arctic
Boreal Environment Research
Alaska
Beringia
op_relation Fuchs, Matthias; Jones, Miriam C; Gowan, Evan J; Frolking, Steve; Walter Anthony, Katey M; Grosse, Guido; Jones, Benjamin M; O'Donnell, Jonathan A; Brosius, Laura Susan; Treat, Claire C (2024): Methane flux from Beringian coastal wetlands for the past 20,000 years. Quaternary Science Reviews, 344, 108976, https://doi.org/10.1016/j.quascirev.2024.108976
Adams, Christopher A; Andrews, Julian E; Jickells, T (2012): Nitrous oxide and methane fluxes vs. carbon, nitrogen and phosphorous burial in new intertidal and saltmarsh sediments. Science of the Total Environment, 434, 240-251, https://doi.org/10.1016/j.scitotenv.2011.11.058
Alford, Douglas P; DeLaune, Ronald D; Lindau, Charles W (1997): Methane flux from Missippi River deltaic plain wetlands. Biogeochemistry, 37(3), 227-236, https://doi.org/10.1023/A:1005762023795
Alm, Jukka; Saarnio, Sanna; Nykänen, Hannu; Silvola, Jouko; Martikainen, Perttij (1999): Winter CO2, CH4 and N2O fluxes on some natural and drained boreal peatlands. Biogeochemistry, 44(2), 163-186, https://doi.org/10.1007/BF00992977
Altor, Anne E; Mitsch, William J (2006): Methane flux from created riparian marshes: Relationship to intermittent versus continuous inundation and emergent macrophytes. Ecological Engineering, 28(3), 224-234, https://doi.org/10.1016/j.ecoleng.2006.06.006
Atkinson, Larry P; Hall, John R (1976): Methane distribution and production in the Georgia salt marsh. Estuarine and Coastal Marine Science, 4(6), 677-686, https://doi.org/10.1016/0302-3524(76)90074-8
Bäckstrand, K; Crill, P M; Jackowicz-Korczyñski, M; Mastepanov, Mikhail; Christensen, T R; Bastviken, D (2010): Annual carbon gas budget for a subarctic peatland, Northern Sweden. Biogeosciences, 7(1), 95-108, https://doi.org/10.5194/bg-7-95-2010
Bartlett, Karen B; Bartlett, David S; Harriss, Robert C; Sebacher, Daniel I (1987): Methane emissions along a salt marsh salinity gradient. Biogeochemistry, 4(3), 183-202, https://doi.org/10.1007/BF02187365
Bartlett, Karen B; Crill, Patrick M; Sass, Ronald L; Harriss, Robert C; Dise, Nancy B (1992): Methane emissions from tundra environments in the Yukon-Kuskokwim delta, Alaska. Journal of Geophysical Research: Atmospheres, 97(D15), 16645, https://doi.org/10.1029/91JD00610
Bartlett, Karen B; Harriss, Robert C; Sebacher, Daniel I (1985): Methane flux from coastal salt marshes. Journal of Geophysical Research, 90(D3), 5710, https://doi.org/10.1029/JD090iD03p05710
Basiliko, N; Yavitt, J B; Dees, P M; Merkel, S M (2003): Methane Biogeochemistry and Methanogen Communities in Two Northern Peatland Ecosystems, New York State. Geomicrobiology Journal, 20(6), 563-577, https://doi.org/10.1080/713851165
Chmura, Gail L; Kellman, Lisa; van Ardenne, Lee; Guntenspergen, Glenn R; Cebrian, Just (2016): Greenhouse Gas Fluxes from Salt Marshes Exposed to Chronic Nutrient Enrichment. PLoS ONE, 11(2), e0149937, https://doi.org/10.1371/journal.pone.0149937
DeLaune, Ronald D; Smith, Chris J; Patrick, William H Jr (1983): Methane release from Gulf coast wetlands. Tellus Series B-Chemical and Physical Meteorology, 35(1), 8, https://doi.org/10.3402/tellusb.v35i1.14581
Dise, Nancy B (1993): Methane emission from Minnesota peatlands: Spatial and seasonal variability. Global Biogeochemical Cycles, 7(1), 123-142, https://doi.org/10.1029/92GB02299
Fan, S M; Wofsy, S C; Bakwin, P S; Jacob, D J; Anderson, S M; Kebabian, P L; McManus, J B; Kolb, C E; Fitzjarrald, D R (1992): Micrometeorological measurements of CH4 and CO2 exchange between the atmosphere and subarctic tundra. Journal of Geophysical Research: Atmospheres, 97(D15), 16627, https://doi.org/10.1029/91JD02531
Fiedler, Sabine; Sommer, Michael (2000): Methane emissions, groundwater levels and redox potentials of common wetland soils in a temperate-humid climate. Global Biogeochemical Cycles, 14(4), 1081-1093, https://doi.org/10.1029/1999GB001255
Flessa, Heiner; Rodionov, Andrej; Guggenberger, Georg; Fuchs, Hans; Magdon, Paul; Shibistova, Olga; Zrazhevskaya, Galina; Mikheyeva, Natalia; Kasansky, Oleg A; Blodau, Christian (2008): Landscape controls of CH 4 fluxes in a catchment of the forest tundra ecotone in northern Siberia. Global Change Biology, 14(9), 2040-2056, https://doi.org/10.1111/j.1365-2486.2008.01633.x
Ford, Tim E; Naiman, Robert J (1988): Alteration of carbon cycling by beaver: methane evasion rates from boreal forest streams and rivers. Canadian Journal of Zoology-Revue Canadienne de Zoologie, 66(2), 529-533, https://doi.org/10.1139/z88-076
Fuchs, Matthias; Jones, Miriam C; Gowan, Evan J; Frolking, Steve; Walter Anthony, Katey M; Grosse, Guido; Jones, Benjamin M; O'Donnel, Jonathan; Brosius, Laura Susan; Treat, Claire C (2024): Methane flux measurements from coastal wetlands on the Kenai Peninsula [dataset]. PANGAEA, https://doi.org/10.1594/PANGAEA.960156
Hamilton, J David; Kelly, Carol A; Rudd, John W M; Hesslein, Raymond H; Roulet, Nigel T (1994): Flux to the atmosphere of CH4 and CO2 from wetland ponds on the Hudson Bay lowlands (HBLs). Journal of Geophysical Research: Atmospheres, 99(D1), 1495, https://doi.org/10.1029/93JD03020
Heyer, J (2000): Methane Emission from the Coastal Area in the Southern Baltic Sea. Estuarine, Coastal and Shelf Science, 51(1), 13-30, https://doi.org/10.1006/ecss.2000.0616
Holm, Guerry O Jr; Perez, Brian C; McWhorter, David E; Krauss, Ken W; Johnson, Darren J; Raynie, Richard C; Killebrew, Charles J (2016): Ecosystem Level Methane Fluxes from Tidal Freshwater and Brackish Marshes of the Mississippi River Delta: Implications for Coastal Wetland Carbon Projects. Wetlands, 36(3), 401-413, https://doi.org/10.1007/s13157-016-0746-7
Holmquist, James R; Windham-Myers, Lisamarie; Bernal, Blanca; Byrd, Kristin B; Crooks, Steve; Gonneea, Meagan Eagle; Herold, Nate; Knox, Sara H; Kroeger, Kevin D; McCombs, John; Megonigal, Patrick J; Lu, Meng; Morris, James T; Sutton-Grier, Ariana E; Troxler, Tiffany G; Weller, Donald E (2018): Uncertainty in United States coastal wetland greenhouse gas inventorying. Environmental Research Letters, 13(11), 115005, https://doi.org/10.1088/1748-9326/aae157
Hyvönen, T; Ojala, A; Kankaala, P; Martikainen, P J (1998): Methane release from stands of water horsetail ( Equisetum fluviatile ) in a boreal lake. Freshwater Biology, 40(2), 275-284, https://doi.org/10.1046/j.1365-2427.1998.00351.x
Juutinen, Sari; Väliranta, Minna; Kuutti, V; Laine, A M; Virtanen, T; Seppä, Heikki; Weckström, Jan; Tuittila, E S (2013): Short-term and long-term carbon dynamics in a northern peatland-stream-lake continuum: A catchment approach. Journal of Geophysical Research: Biogeosciences, 118(1), 171-183, https://doi.org/10.1002/jgrg.20028
Kang, H; Freeman, C (2002): The Influence of Hydrochemistry on Methane Emissions from Two Contrasting Northern Wetlands. Water Air and Soil Pollution, 141(1/4), 263-272, https://doi.org/10.1023/A:1021324326859
Kankaala, Paula; Ojala, Anne; Käki, Tiina (2004): Temporal and spatial variation in methane emissions from a flooded transgression shore of a boreal lake. Biogeochemistry, 68(3), 297-311, https://doi.org/10.1023/B:BIOG.0000031030.77498.1f
Kelley, Cheryl A; Martens, Christopher S; Ussler, William III (1995): Methane dynamics across a tidally flooded riverbank margin. Limnology and Oceanography, 40(6), 1112-1129, https://doi.org/10.4319/lo.1995.40.6.1112
King, Gary M; Wiebe, William J (1978): Methane release from soils of a Georgia salt marsh. Geochimica et Cosmochimica Acta, 42(4), 343-348, https://doi.org/10.1016/0016-7037(78)90264-8
Koebsch, Franziska; Glatzel, Stephan; Jurasinski, Gerald (2013): Vegetation controls methane emissions in a coastal brackish fen. Wetlands Ecology and Management, 21(5), 323-337, https://doi.org/10.1007/s11273-013-9304-8
Krauss, Ken W; Holm, Guerry O Jr; Perez, Brian C; McWhorter, David E; Cormier, Nicole; Moss, Rebecca F; Johnson, Darren J; Neubauer, Scott C; Raynie, Richard C (2016): Component greenhouse gas fluxes and radiative balance from two deltaic marshes in Louisiana: Pairing chamber techniques and eddy covariance. Journal of Geophysical Research: Biogeosciences, 121(6), 1503-1521, https://doi.org/10.1002/2015JG003224
Kuhn, McKenzie A; Varner, Ruth K; Bastviken, David; Crill, Patrick; MacIntyre, Sally; Turetsky, Merritt; Walter Anthony, Katey; McGuire, Anthony D; Olefeldt, David (2021): BAWLD-CH4: a comprehensive dataset of methane fluxes from boreal and arctic ecosystems. Earth System Science Data, 13(11), 5151-5189, https://doi.org/10.5194/essd-13-5151-2021
Laine, Anna; Wilson, David; Kiely, Gerard; Byrne, Kenneth A (2007): Methane flux dynamics in an Irish lowland blanket bog. Plant and Soil, 299(1-2), 181-193, https://doi.org/10.1007/s11104-007-9374-6
Lansdown, John M; Quay, Paul D; King, S L (1992): CH4 production via CO2 reduction in a temperate bog: A source of 13C-depIeted CH4. Geochimica et Cosmochimica Acta, 56(9), 3493-3503, https://doi.org/10.1016/0016-7037(92)90393-W
Leppälä, Mirva; Oksanen, Jari; Tuittila, Eeva-Stiina (2011): Methane flux dynamics during mire succession. Oecologia, 165(2), 489-499, https://doi.org/10.1007/s00442-010-1754-6
Levy, Peter E; Burden, Annette; Cooper, Mark D A; Dinsmore, Kerry J; Drewer, Julia; Evans, Chris D; Fowler, David; Gaiawyn, Jenny; Gray, Alan; Jones, Stephanie K; Jones, Timothy G; McNamara, Niall P; Mills, Robert; Ostle, Nick; Sheppard, Lucy J; Skiba, Ute; Sowerby, Alwyn; Ward, Susan E; Zieliński, Piotr (2012): Methane emissions from soils: synthesis and analysis of a large UK data set. Global Change Biology, 18(5), 1657-1669, https://doi.org/10.1111/j.1365-2486.2011.02616.x
Liikanen, Anu; Silvennoinen, Hanna; Karvo, Anna; Rantakokko, Panu; Martikainen, Pertti J (2009): Methane and nitrous oxide fluxes in two coastal wetlands in the northeastern Gulf of Bothnia, Baltic Sea. Boreal Environment Research 14 (2009). https://www.osti.gov/etdeweb/biblio/964437. 14, 351-358, https://www.borenv.net/BER/archive/pdfs/ber14/ber14-351.pdf
Lipschultz, Fredric (1981): Methane Release from a Brackish Intertidal Salt-Marsh Embayment of Chesapeake Bay, Maryland. Estuaries, 4(2), 143, https://doi.org/10.2307/1351677
Magenheimer, J F; Moore, T R; Chmura, G L; Daoust, R J (1996): Methane and Carbon Dioxide Flux from a Macrotidal Salt Marsh, Bay of Fundy, New Brunswick. Estuaries, 19(1), 139, https://doi.org/10.2307/1352658
Martin, Abra F; Lantz, Trevor C; Humphreys, Elyn R (2017): Ice wedge degradation and CO2 and CH4 emissions in the Tuktoyaktuk Coastlands, NT. Arctic Science, AS-2016-0011, https://doi.org/10.1139/AS-2016-0011
Marushchak, Maija E; Friborg, Thomas; Biasi, Christina; Herbst, M; Johansson, T; Kiepe, I; Liimatainen, M; Lind, Saara E; Martikainen, Pertti J; Virtanen, T; Soegaard, H; Shurpali, Narasinha J (2016): Methane dynamics in the subarctic tundra: combining stable isotope analyses, plot- and ecosystem-scale flux measurements. Biogeosciences, 13(2), 597-608, https://doi.org/10.5194/bg-13-597-2016
Mastepanov, Mikhail; Sigsgaard, C; Tagesson, T; Ström, L; Tamstorf, M P; Lund, Magnus; Christensen, Torben R (2013): Revisiting factors controlling methane emissions from high-Arctic tundra. Biogeosciences, 10(7), 5139-5158, https://doi.org/10.5194/bg-10-5139-2013
Mastepanov, Mikhail; Sigsgaard, Charlotte; Dlugokencky, Edward J; Houweling, Sander; Ström, Lena; Tamstorf, Mikkel P; Christensen, Torben R (2008): Large tundra methane burst during onset of freezing. Nature, 456(7222), 628-630, https://doi.org/10.1038/nature07464
Megonigal, J Patrick; Schlesinger, William H (2002): Methane-limited methanotrophy in tidal freshwater swamps. Global Biogeochemical Cycles, 16(4), 35-1-35-10, https://doi.org/10.1029/2001GB001594
Moore, T R; Heyes, A; Roulet, N T (1994): Methane emissions from wetlands, southern Hudson Bay lowland. Journal of Geophysical Research, 99(D1), 1455, https://doi.org/10.1029/93JD02457
Mueller, Peter; Hager, Rachel N; Meschter, Justin E; Mozdzer, Thomas J; Langley, J Adam; Jensen, Kai; Megonigal, J Patrick (2016): Complex invader-ecosystem interactions and seasonality mediate the impact of non-native Phragmites on CH4 emissions. Biological Invasions, 18(9), 2635-2647, https://doi.org/10.1007/s10530-016-1093-6
Nedwell, David B; Embley, T M; Purdy, K J (2004): Sulphate reduction, methanogenesis and phylogenetics of the sulphate reducing bacterial communities along an estuarine gradient. Aquatic Microbial Ecology, 37, 209-217, https://doi.org/10.3354/ame037209
Neubauer, S C; Miller, W D; Cofman Anderson, I (2000): Carbon cycling in a tidal freshwater marsh ecosystem:a carbon gas flux study. Marine Ecology Progress Series, 199, 13-30, https://doi.org/10.3354/meps199013
Nykänen, Hannu; Alm, Jukka; Silvola, Jouko; Tolonen, Kimmo; Martikainen, Pertti J (1998): Methane fluxes on boreal peatlands of different fertility and the effect of long-term experimental lowering of the water table on flux rates. Global Biogeochemical Cycles, 12(1), 53-69, https://doi.org/10.1029/97GB02732
Nykänen, Hannu; Heikkinen, Juha E P; Pirinen, Leena; Tiilikainen, Karoliina; Martikainen, Pertti J (2003): Annual CO 2 exchange and CH 4 fluxes on a subarctic palsa mire during climatically different years. Global Biogeochemical Cycles, 17(1), https://doi.org/10.1029/2002GB001861
op_rights CC-BY-4.0: Creative Commons Attribution 4.0 International
Access constraints: unrestricted
info:eu-repo/semantics/openAccess
op_doi https://doi.org/10.1594/PANGAEA.96016010.1016/j.quascirev.2024.10897610.1016/j.scitotenv.2011.11.05810.1023/A:100576202379510.1007/BF0099297710.1016/j.ecoleng.2006.06.00610.1016/0302-3524(76)90074-810.5194/bg-7-95-201010.1007/BF0218736510.1029/91JD0061010
_version_ 1813443927916675072
spelling ftpangaea:oai:pangaea.de:doi:10.1594/PANGAEA.960160 2024-10-20T14:05:41+00:00 Data set for modeling methane fluxes of Beringian coastal wetlands Fuchs, Matthias Jones, Miriam C Gowan, Evan J Frolking, Steve Walter Anthony, Katey M Grosse, Guido Jones, Benjamin M O'Donnel, Jonathan Brosius, Laura Susan Treat, Claire C MEDIAN LATITUDE: 57.292354 * MEDIAN LONGITUDE: -54.390987 * SOUTH-BOUND LATITUDE: 29.501330 * WEST-BOUND LONGITUDE: -162.015300 * NORTH-BOUND LATITUDE: 74.500000 * EAST-BOUND LONGITUDE: 161.200000 * MINIMUM ORDINAL NUMBER: 1 * MAXIMUM ORDINAL NUMBER: 258 2024 text/tab-separated-values, 3087 data points https://doi.pangaea.de/10.1594/PANGAEA.960160 https://doi.org/10.1594/PANGAEA.960160 en eng PANGAEA Fuchs, Matthias; Jones, Miriam C; Gowan, Evan J; Frolking, Steve; Walter Anthony, Katey M; Grosse, Guido; Jones, Benjamin M; O'Donnell, Jonathan A; Brosius, Laura Susan; Treat, Claire C (2024): Methane flux from Beringian coastal wetlands for the past 20,000 years. Quaternary Science Reviews, 344, 108976, https://doi.org/10.1016/j.quascirev.2024.108976 Adams, Christopher A; Andrews, Julian E; Jickells, T (2012): Nitrous oxide and methane fluxes vs. carbon, nitrogen and phosphorous burial in new intertidal and saltmarsh sediments. Science of the Total Environment, 434, 240-251, https://doi.org/10.1016/j.scitotenv.2011.11.058 Alford, Douglas P; DeLaune, Ronald D; Lindau, Charles W (1997): Methane flux from Missippi River deltaic plain wetlands. Biogeochemistry, 37(3), 227-236, https://doi.org/10.1023/A:1005762023795 Alm, Jukka; Saarnio, Sanna; Nykänen, Hannu; Silvola, Jouko; Martikainen, Perttij (1999): Winter CO2, CH4 and N2O fluxes on some natural and drained boreal peatlands. Biogeochemistry, 44(2), 163-186, https://doi.org/10.1007/BF00992977 Altor, Anne E; Mitsch, William J (2006): Methane flux from created riparian marshes: Relationship to intermittent versus continuous inundation and emergent macrophytes. Ecological Engineering, 28(3), 224-234, https://doi.org/10.1016/j.ecoleng.2006.06.006 Atkinson, Larry P; Hall, John R (1976): Methane distribution and production in the Georgia salt marsh. Estuarine and Coastal Marine Science, 4(6), 677-686, https://doi.org/10.1016/0302-3524(76)90074-8 Bäckstrand, K; Crill, P M; Jackowicz-Korczyñski, M; Mastepanov, Mikhail; Christensen, T R; Bastviken, D (2010): Annual carbon gas budget for a subarctic peatland, Northern Sweden. Biogeosciences, 7(1), 95-108, https://doi.org/10.5194/bg-7-95-2010 Bartlett, Karen B; Bartlett, David S; Harriss, Robert C; Sebacher, Daniel I (1987): Methane emissions along a salt marsh salinity gradient. Biogeochemistry, 4(3), 183-202, https://doi.org/10.1007/BF02187365 Bartlett, Karen B; Crill, Patrick M; Sass, Ronald L; Harriss, Robert C; Dise, Nancy B (1992): Methane emissions from tundra environments in the Yukon-Kuskokwim delta, Alaska. Journal of Geophysical Research: Atmospheres, 97(D15), 16645, https://doi.org/10.1029/91JD00610 Bartlett, Karen B; Harriss, Robert C; Sebacher, Daniel I (1985): Methane flux from coastal salt marshes. Journal of Geophysical Research, 90(D3), 5710, https://doi.org/10.1029/JD090iD03p05710 Basiliko, N; Yavitt, J B; Dees, P M; Merkel, S M (2003): Methane Biogeochemistry and Methanogen Communities in Two Northern Peatland Ecosystems, New York State. Geomicrobiology Journal, 20(6), 563-577, https://doi.org/10.1080/713851165 Chmura, Gail L; Kellman, Lisa; van Ardenne, Lee; Guntenspergen, Glenn R; Cebrian, Just (2016): Greenhouse Gas Fluxes from Salt Marshes Exposed to Chronic Nutrient Enrichment. PLoS ONE, 11(2), e0149937, https://doi.org/10.1371/journal.pone.0149937 DeLaune, Ronald D; Smith, Chris J; Patrick, William H Jr (1983): Methane release from Gulf coast wetlands. Tellus Series B-Chemical and Physical Meteorology, 35(1), 8, https://doi.org/10.3402/tellusb.v35i1.14581 Dise, Nancy B (1993): Methane emission from Minnesota peatlands: Spatial and seasonal variability. Global Biogeochemical Cycles, 7(1), 123-142, https://doi.org/10.1029/92GB02299 Fan, S M; Wofsy, S C; Bakwin, P S; Jacob, D J; Anderson, S M; Kebabian, P L; McManus, J B; Kolb, C E; Fitzjarrald, D R (1992): Micrometeorological measurements of CH4 and CO2 exchange between the atmosphere and subarctic tundra. Journal of Geophysical Research: Atmospheres, 97(D15), 16627, https://doi.org/10.1029/91JD02531 Fiedler, Sabine; Sommer, Michael (2000): Methane emissions, groundwater levels and redox potentials of common wetland soils in a temperate-humid climate. Global Biogeochemical Cycles, 14(4), 1081-1093, https://doi.org/10.1029/1999GB001255 Flessa, Heiner; Rodionov, Andrej; Guggenberger, Georg; Fuchs, Hans; Magdon, Paul; Shibistova, Olga; Zrazhevskaya, Galina; Mikheyeva, Natalia; Kasansky, Oleg A; Blodau, Christian (2008): Landscape controls of CH 4 fluxes in a catchment of the forest tundra ecotone in northern Siberia. Global Change Biology, 14(9), 2040-2056, https://doi.org/10.1111/j.1365-2486.2008.01633.x Ford, Tim E; Naiman, Robert J (1988): Alteration of carbon cycling by beaver: methane evasion rates from boreal forest streams and rivers. Canadian Journal of Zoology-Revue Canadienne de Zoologie, 66(2), 529-533, https://doi.org/10.1139/z88-076 Fuchs, Matthias; Jones, Miriam C; Gowan, Evan J; Frolking, Steve; Walter Anthony, Katey M; Grosse, Guido; Jones, Benjamin M; O'Donnel, Jonathan; Brosius, Laura Susan; Treat, Claire C (2024): Methane flux measurements from coastal wetlands on the Kenai Peninsula [dataset]. PANGAEA, https://doi.org/10.1594/PANGAEA.960156 Hamilton, J David; Kelly, Carol A; Rudd, John W M; Hesslein, Raymond H; Roulet, Nigel T (1994): Flux to the atmosphere of CH4 and CO2 from wetland ponds on the Hudson Bay lowlands (HBLs). Journal of Geophysical Research: Atmospheres, 99(D1), 1495, https://doi.org/10.1029/93JD03020 Heyer, J (2000): Methane Emission from the Coastal Area in the Southern Baltic Sea. Estuarine, Coastal and Shelf Science, 51(1), 13-30, https://doi.org/10.1006/ecss.2000.0616 Holm, Guerry O Jr; Perez, Brian C; McWhorter, David E; Krauss, Ken W; Johnson, Darren J; Raynie, Richard C; Killebrew, Charles J (2016): Ecosystem Level Methane Fluxes from Tidal Freshwater and Brackish Marshes of the Mississippi River Delta: Implications for Coastal Wetland Carbon Projects. Wetlands, 36(3), 401-413, https://doi.org/10.1007/s13157-016-0746-7 Holmquist, James R; Windham-Myers, Lisamarie; Bernal, Blanca; Byrd, Kristin B; Crooks, Steve; Gonneea, Meagan Eagle; Herold, Nate; Knox, Sara H; Kroeger, Kevin D; McCombs, John; Megonigal, Patrick J; Lu, Meng; Morris, James T; Sutton-Grier, Ariana E; Troxler, Tiffany G; Weller, Donald E (2018): Uncertainty in United States coastal wetland greenhouse gas inventorying. Environmental Research Letters, 13(11), 115005, https://doi.org/10.1088/1748-9326/aae157 Hyvönen, T; Ojala, A; Kankaala, P; Martikainen, P J (1998): Methane release from stands of water horsetail ( Equisetum fluviatile ) in a boreal lake. Freshwater Biology, 40(2), 275-284, https://doi.org/10.1046/j.1365-2427.1998.00351.x Juutinen, Sari; Väliranta, Minna; Kuutti, V; Laine, A M; Virtanen, T; Seppä, Heikki; Weckström, Jan; Tuittila, E S (2013): Short-term and long-term carbon dynamics in a northern peatland-stream-lake continuum: A catchment approach. Journal of Geophysical Research: Biogeosciences, 118(1), 171-183, https://doi.org/10.1002/jgrg.20028 Kang, H; Freeman, C (2002): The Influence of Hydrochemistry on Methane Emissions from Two Contrasting Northern Wetlands. Water Air and Soil Pollution, 141(1/4), 263-272, https://doi.org/10.1023/A:1021324326859 Kankaala, Paula; Ojala, Anne; Käki, Tiina (2004): Temporal and spatial variation in methane emissions from a flooded transgression shore of a boreal lake. Biogeochemistry, 68(3), 297-311, https://doi.org/10.1023/B:BIOG.0000031030.77498.1f Kelley, Cheryl A; Martens, Christopher S; Ussler, William III (1995): Methane dynamics across a tidally flooded riverbank margin. Limnology and Oceanography, 40(6), 1112-1129, https://doi.org/10.4319/lo.1995.40.6.1112 King, Gary M; Wiebe, William J (1978): Methane release from soils of a Georgia salt marsh. Geochimica et Cosmochimica Acta, 42(4), 343-348, https://doi.org/10.1016/0016-7037(78)90264-8 Koebsch, Franziska; Glatzel, Stephan; Jurasinski, Gerald (2013): Vegetation controls methane emissions in a coastal brackish fen. Wetlands Ecology and Management, 21(5), 323-337, https://doi.org/10.1007/s11273-013-9304-8 Krauss, Ken W; Holm, Guerry O Jr; Perez, Brian C; McWhorter, David E; Cormier, Nicole; Moss, Rebecca F; Johnson, Darren J; Neubauer, Scott C; Raynie, Richard C (2016): Component greenhouse gas fluxes and radiative balance from two deltaic marshes in Louisiana: Pairing chamber techniques and eddy covariance. Journal of Geophysical Research: Biogeosciences, 121(6), 1503-1521, https://doi.org/10.1002/2015JG003224 Kuhn, McKenzie A; Varner, Ruth K; Bastviken, David; Crill, Patrick; MacIntyre, Sally; Turetsky, Merritt; Walter Anthony, Katey; McGuire, Anthony D; Olefeldt, David (2021): BAWLD-CH4: a comprehensive dataset of methane fluxes from boreal and arctic ecosystems. Earth System Science Data, 13(11), 5151-5189, https://doi.org/10.5194/essd-13-5151-2021 Laine, Anna; Wilson, David; Kiely, Gerard; Byrne, Kenneth A (2007): Methane flux dynamics in an Irish lowland blanket bog. Plant and Soil, 299(1-2), 181-193, https://doi.org/10.1007/s11104-007-9374-6 Lansdown, John M; Quay, Paul D; King, S L (1992): CH4 production via CO2 reduction in a temperate bog: A source of 13C-depIeted CH4. Geochimica et Cosmochimica Acta, 56(9), 3493-3503, https://doi.org/10.1016/0016-7037(92)90393-W Leppälä, Mirva; Oksanen, Jari; Tuittila, Eeva-Stiina (2011): Methane flux dynamics during mire succession. Oecologia, 165(2), 489-499, https://doi.org/10.1007/s00442-010-1754-6 Levy, Peter E; Burden, Annette; Cooper, Mark D A; Dinsmore, Kerry J; Drewer, Julia; Evans, Chris D; Fowler, David; Gaiawyn, Jenny; Gray, Alan; Jones, Stephanie K; Jones, Timothy G; McNamara, Niall P; Mills, Robert; Ostle, Nick; Sheppard, Lucy J; Skiba, Ute; Sowerby, Alwyn; Ward, Susan E; Zieliński, Piotr (2012): Methane emissions from soils: synthesis and analysis of a large UK data set. Global Change Biology, 18(5), 1657-1669, https://doi.org/10.1111/j.1365-2486.2011.02616.x Liikanen, Anu; Silvennoinen, Hanna; Karvo, Anna; Rantakokko, Panu; Martikainen, Pertti J (2009): Methane and nitrous oxide fluxes in two coastal wetlands in the northeastern Gulf of Bothnia, Baltic Sea. Boreal Environment Research 14 (2009). https://www.osti.gov/etdeweb/biblio/964437. 14, 351-358, https://www.borenv.net/BER/archive/pdfs/ber14/ber14-351.pdf Lipschultz, Fredric (1981): Methane Release from a Brackish Intertidal Salt-Marsh Embayment of Chesapeake Bay, Maryland. Estuaries, 4(2), 143, https://doi.org/10.2307/1351677 Magenheimer, J F; Moore, T R; Chmura, G L; Daoust, R J (1996): Methane and Carbon Dioxide Flux from a Macrotidal Salt Marsh, Bay of Fundy, New Brunswick. Estuaries, 19(1), 139, https://doi.org/10.2307/1352658 Martin, Abra F; Lantz, Trevor C; Humphreys, Elyn R (2017): Ice wedge degradation and CO2 and CH4 emissions in the Tuktoyaktuk Coastlands, NT. Arctic Science, AS-2016-0011, https://doi.org/10.1139/AS-2016-0011 Marushchak, Maija E; Friborg, Thomas; Biasi, Christina; Herbst, M; Johansson, T; Kiepe, I; Liimatainen, M; Lind, Saara E; Martikainen, Pertti J; Virtanen, T; Soegaard, H; Shurpali, Narasinha J (2016): Methane dynamics in the subarctic tundra: combining stable isotope analyses, plot- and ecosystem-scale flux measurements. Biogeosciences, 13(2), 597-608, https://doi.org/10.5194/bg-13-597-2016 Mastepanov, Mikhail; Sigsgaard, C; Tagesson, T; Ström, L; Tamstorf, M P; Lund, Magnus; Christensen, Torben R (2013): Revisiting factors controlling methane emissions from high-Arctic tundra. Biogeosciences, 10(7), 5139-5158, https://doi.org/10.5194/bg-10-5139-2013 Mastepanov, Mikhail; Sigsgaard, Charlotte; Dlugokencky, Edward J; Houweling, Sander; Ström, Lena; Tamstorf, Mikkel P; Christensen, Torben R (2008): Large tundra methane burst during onset of freezing. Nature, 456(7222), 628-630, https://doi.org/10.1038/nature07464 Megonigal, J Patrick; Schlesinger, William H (2002): Methane-limited methanotrophy in tidal freshwater swamps. Global Biogeochemical Cycles, 16(4), 35-1-35-10, https://doi.org/10.1029/2001GB001594 Moore, T R; Heyes, A; Roulet, N T (1994): Methane emissions from wetlands, southern Hudson Bay lowland. Journal of Geophysical Research, 99(D1), 1455, https://doi.org/10.1029/93JD02457 Mueller, Peter; Hager, Rachel N; Meschter, Justin E; Mozdzer, Thomas J; Langley, J Adam; Jensen, Kai; Megonigal, J Patrick (2016): Complex invader-ecosystem interactions and seasonality mediate the impact of non-native Phragmites on CH4 emissions. Biological Invasions, 18(9), 2635-2647, https://doi.org/10.1007/s10530-016-1093-6 Nedwell, David B; Embley, T M; Purdy, K J (2004): Sulphate reduction, methanogenesis and phylogenetics of the sulphate reducing bacterial communities along an estuarine gradient. Aquatic Microbial Ecology, 37, 209-217, https://doi.org/10.3354/ame037209 Neubauer, S C; Miller, W D; Cofman Anderson, I (2000): Carbon cycling in a tidal freshwater marsh ecosystem:a carbon gas flux study. Marine Ecology Progress Series, 199, 13-30, https://doi.org/10.3354/meps199013 Nykänen, Hannu; Alm, Jukka; Silvola, Jouko; Tolonen, Kimmo; Martikainen, Pertti J (1998): Methane fluxes on boreal peatlands of different fertility and the effect of long-term experimental lowering of the water table on flux rates. Global Biogeochemical Cycles, 12(1), 53-69, https://doi.org/10.1029/97GB02732 Nykänen, Hannu; Heikkinen, Juha E P; Pirinen, Leena; Tiilikainen, Karoliina; Martikainen, Pertti J (2003): Annual CO 2 exchange and CH 4 fluxes on a subarctic palsa mire during climatically different years. Global Biogeochemical Cycles, 17(1), https://doi.org/10.1029/2002GB001861 CC-BY-4.0: Creative Commons Attribution 4.0 International Access constraints: unrestricted info:eu-repo/semantics/openAccess Analytical method Arctic Beringia Class Comment FluxWIN LATITUDE Location LONGITUDE Major vegetation Methane flux ORDINAL NUMBER Original unit Original value paleoreconstruction Persistent Identifier Reference/source sea-level rise Site The role of non-growing season processes in the methane and nitrous oxide budgets in pristine northern ecosystems Type dataset 2024 ftpangaea https://doi.org/10.1594/PANGAEA.96016010.1016/j.quascirev.2024.10897610.1016/j.scitotenv.2011.11.05810.1023/A:100576202379510.1007/BF0099297710.1016/j.ecoleng.2006.06.00610.1016/0302-3524(76)90074-810.5194/bg-7-95-201010.1007/BF0218736510.1029/91JD0061010 2024-10-02T00:42:44Z For upscaling CH4 flux estimates in Beringia during the past 20,000 years, we collected 231 present-day CH4 fluxes from coastal wetlands in the Northern Hemisphere. We combined our own flux data (27 plot measurements) from the Kenai Peninsula, Alaska with previously published data. Data were compiled from different sources (e.g. Treat et al. 2018; 2021; Poffenbarger et al. 2011; Liikanen et al. 2009; Holmquist et al. 2018; Kuhn et al. 2021). CH4 fluxes from the literature were calculated in g CH4 m-2 yr-1 for the growing season, which we set to 153 days (May to September). Each CH4 data entry was harmonized by classifying it into one of the six wetland types Saltwater, tidal regularly flooded, Temporarily irregularly flooded, Permanently to semi-permanently flooded, Seasonally flooded, Non-tidal saturated, Water-body. This resulted in a stratified pool of CH4 fluxes and allowed a bootstrapping approach to estimate uncertainty in the CH4 fluxes for Beringian coastal wetlands based on the variability of CH4 fluxes associated to the different wetland types. For each of 258 sites, the dataset includes a site description, calculated CH4 flux from this research, wetland type, wetland class, method of CH4 measurement, major vegetation type, site location, the originally published CH4 value ("orig val") in the referenced paper, original units of measurement, citation and persistent identifier for the original data source, and comments. For some of the data points no coordinates information was given in the original publication, therefore the latitude and longitude fields were left blank. Dataset Arctic Arctic Boreal Environment Research Alaska Beringia PANGAEA - Data Publisher for Earth & Environmental Science Arctic Liikanen ENVELOPE(26.967,26.967,65.533,65.533) ENVELOPE(-162.015300,161.200000,74.500000,29.501330)