Seawater carbonate chemistry and seasonal variations of Fucus vesiculosus fertility in the western Baltic Sea
Ocean warming and acidification may substantially affect the reproduction of keystone species such as Fucus vesiculosus (Phaeophyceae). In four consecutive benthic mesocosm experiments, we compared the reproductive biology and quantified the temporal development of Baltic Sea Fucus fertility under t...
Main Authors: | , , , , |
---|---|
Format: | Dataset |
Language: | English |
Published: |
PANGAEA
2023
|
Subjects: | |
Online Access: | https://doi.pangaea.de/10.1594/PANGAEA.958968 https://doi.org/10.1594/PANGAEA.958968 |
Summary: | Ocean warming and acidification may substantially affect the reproduction of keystone species such as Fucus vesiculosus (Phaeophyceae). In four consecutive benthic mesocosm experiments, we compared the reproductive biology and quantified the temporal development of Baltic Sea Fucus fertility under the single and combined impact of elevated seawater temperature and pCO2 (1100 ppm). In an additional experiment, we investigated the impact of temperature (0–25°C) on the maturation of North Sea F. vesiculosus receptacles. A marked seasonal reproductive cycle of F. vesiculosus became apparent in the course of 1 year. The first appearance of receptacles on vegetative apices and the further development of immature receptacles of F. vesiculosus in autumn were unaffected by warming or elevated pCO2. During winter, elevated pCO2 in both ambient and warmed temperatures increased the proportion of mature receptacles significantly. In spring, warming and, to a lesser extent, elevated pCO2 accelerated the maturation of receptacles and advanced the release of gametes by up to 2 weeks. Likewise, in the laboratory, maturation and gamete release were accelerated at 15–25°C relative to colder temperatures. In summary, elevated pCO2 and/or warming do not influence receptacle appearance in autumn, but do accelerate the maturation process during spring, resulting in earlier gamete release. Temperature and, to a much lesser extent, pCO2 affect the temporal development of Fucus fertility. Thus, rising temperatures will mainly shift or disturb the phenology of F. vesiculosus in spring and summer, which may alter and/or hamper its ecological functions in shallow coastal ecosystems of the Baltic Sea. |
---|