Seawater carbonate chemistry and the growth rate of marine diatom Skeletonema marinoi

Because of their large population sizes and rapid cell division rates, marine microbes have, or can generate, ample variation to fuel evolution over a few weeks or months, and subsequently have the potential to evolve in response to global change. Here we measure evolution in the marine diatom Skele...

Full description

Bibliographic Details
Main Authors: Scheinin, Matias, Riebesell, Ulf, Rynearson, T A, Lohbeck, Kai T, Collins, Sinéad
Format: Dataset
Language:English
Published: PANGAEA 2015
Subjects:
Online Access:https://doi.pangaea.de/10.1594/PANGAEA.956080
https://doi.org/10.1594/PANGAEA.956080
_version_ 1825513101398638592
author Scheinin, Matias
Riebesell, Ulf
Rynearson, T A
Lohbeck, Kai T
Collins, Sinéad
author_facet Scheinin, Matias
Riebesell, Ulf
Rynearson, T A
Lohbeck, Kai T
Collins, Sinéad
author_sort Scheinin, Matias
collection PANGAEA - Data Publisher for Earth & Environmental Science
description Because of their large population sizes and rapid cell division rates, marine microbes have, or can generate, ample variation to fuel evolution over a few weeks or months, and subsequently have the potential to evolve in response to global change. Here we measure evolution in the marine diatom Skeletonema marinoi evolved in a natural plankton community in CO2-enriched mesocosms deployed in situ. Mesocosm enclosures are typically used to study how the species composition and biogeochemistry of marine communities respond to environmental shifts, but have not been used for experimental evolution to date. Using this approach, we detect a large evolutionary response to CO2 enrichment in a focal marine diatom, where population growth rate increased by 1.3-fold in high CO2-evolved lineages. This study opens an exciting new possibility of carrying out in situ evolution experiments to understand how marine microbial communities evolve in response to environmental change.
format Dataset
genre North Atlantic
Ocean acidification
genre_facet North Atlantic
Ocean acidification
id ftpangaea:oai:pangaea.de:doi:10.1594/PANGAEA.956080
institution Open Polar
language English
long_lat ENVELOPE(11.478330,11.478330,58.265000,58.265000)
op_collection_id ftpangaea
op_coverage LATITUDE: 58.265000 * LONGITUDE: 11.478330 * DATE/TIME START: 2013-03-07T00:00:00 * DATE/TIME END: 2013-06-28T00:00:00
op_doi https://doi.org/10.1594/PANGAEA.95608010.1098/rsif.2015.0056
op_relation Scheinin, Matias; Riebesell, Ulf; Rynearson, T A; Lohbeck, Kai T; Collins, Sinéad (2015): Experimental evolution gone wild. Journal of The Royal Society Interface, 12(106), 20150056, https://doi.org/10.1098/rsif.2015.0056
Gattuso, Jean-Pierre; Epitalon, Jean-Marie; Lavigne, Héloïse; Orr, James (2021): seacarb: seawater carbonate chemistry with R. R package version 3.2.16. https://cran.r-project.org/web/packages/seacarb/index.html
https://doi.pangaea.de/10.1594/PANGAEA.956080
https://doi.org/10.1594/PANGAEA.956080
op_rights CC-BY-4.0: Creative Commons Attribution 4.0 International
Access constraints: unrestricted
info:eu-repo/semantics/openAccess
publishDate 2015
publisher PANGAEA
record_format openpolar
spelling ftpangaea:oai:pangaea.de:doi:10.1594/PANGAEA.956080 2025-03-02T15:34:08+00:00 Seawater carbonate chemistry and the growth rate of marine diatom Skeletonema marinoi Scheinin, Matias Riebesell, Ulf Rynearson, T A Lohbeck, Kai T Collins, Sinéad LATITUDE: 58.265000 * LONGITUDE: 11.478330 * DATE/TIME START: 2013-03-07T00:00:00 * DATE/TIME END: 2013-06-28T00:00:00 2015 text/tab-separated-values, 2058 data points https://doi.pangaea.de/10.1594/PANGAEA.956080 https://doi.org/10.1594/PANGAEA.956080 en eng PANGAEA Scheinin, Matias; Riebesell, Ulf; Rynearson, T A; Lohbeck, Kai T; Collins, Sinéad (2015): Experimental evolution gone wild. Journal of The Royal Society Interface, 12(106), 20150056, https://doi.org/10.1098/rsif.2015.0056 Gattuso, Jean-Pierre; Epitalon, Jean-Marie; Lavigne, Héloïse; Orr, James (2021): seacarb: seawater carbonate chemistry with R. R package version 3.2.16. https://cran.r-project.org/web/packages/seacarb/index.html https://doi.pangaea.de/10.1594/PANGAEA.956080 https://doi.org/10.1594/PANGAEA.956080 CC-BY-4.0: Creative Commons Attribution 4.0 International Access constraints: unrestricted info:eu-repo/semantics/openAccess Alkalinity total Aragonite saturation state Bicarbonate ion Biological sample BIOS Block Bottles or small containers/Aquaria (<20 L) Calcite saturation state Calculated using seacarb after Nisumaa et al. (2010) Carbon inorganic dissolved Carbonate ion Carbonate system computation flag Carbon dioxide Chromista Coast and continental shelf Fugacity of carbon dioxide (water) at sea surface temperature (wet air) Growth/Morphology Gullmar_fjord_2013 Gullmar Fjord Skagerrak Sweden Identification Laboratory experiment Mesocosm label North Atlantic OA-ICC Ocean Acidification International Coordination Centre Ochrophyta Other studied parameter or process Partial pressure of carbon dioxide (water) at sea surface temperature (wet air) Pelagos pH total scale Phosphate Phytoplankton Salinity Silicate Single species Skeletonema marinoi Species unique identification unique identification (Semantic URI) unique identification (URI) Temperate Temperature dataset 2015 ftpangaea https://doi.org/10.1594/PANGAEA.95608010.1098/rsif.2015.0056 2025-02-04T08:26:19Z Because of their large population sizes and rapid cell division rates, marine microbes have, or can generate, ample variation to fuel evolution over a few weeks or months, and subsequently have the potential to evolve in response to global change. Here we measure evolution in the marine diatom Skeletonema marinoi evolved in a natural plankton community in CO2-enriched mesocosms deployed in situ. Mesocosm enclosures are typically used to study how the species composition and biogeochemistry of marine communities respond to environmental shifts, but have not been used for experimental evolution to date. Using this approach, we detect a large evolutionary response to CO2 enrichment in a focal marine diatom, where population growth rate increased by 1.3-fold in high CO2-evolved lineages. This study opens an exciting new possibility of carrying out in situ evolution experiments to understand how marine microbial communities evolve in response to environmental change. Dataset North Atlantic Ocean acidification PANGAEA - Data Publisher for Earth & Environmental Science ENVELOPE(11.478330,11.478330,58.265000,58.265000)
spellingShingle Alkalinity
total
Aragonite saturation state
Bicarbonate ion
Biological sample
BIOS
Block
Bottles or small containers/Aquaria (<20 L)
Calcite saturation state
Calculated using seacarb after Nisumaa et al. (2010)
Carbon
inorganic
dissolved
Carbonate ion
Carbonate system computation flag
Carbon dioxide
Chromista
Coast and continental shelf
Fugacity of carbon dioxide (water) at sea surface temperature (wet air)
Growth/Morphology
Gullmar_fjord_2013
Gullmar Fjord
Skagerrak
Sweden
Identification
Laboratory experiment
Mesocosm label
North Atlantic
OA-ICC
Ocean Acidification International Coordination Centre
Ochrophyta
Other studied parameter or process
Partial pressure of carbon dioxide (water) at sea surface temperature (wet air)
Pelagos
pH
total scale
Phosphate
Phytoplankton
Salinity
Silicate
Single species
Skeletonema marinoi
Species
unique identification
unique identification (Semantic URI)
unique identification (URI)
Temperate
Temperature
Scheinin, Matias
Riebesell, Ulf
Rynearson, T A
Lohbeck, Kai T
Collins, Sinéad
Seawater carbonate chemistry and the growth rate of marine diatom Skeletonema marinoi
title Seawater carbonate chemistry and the growth rate of marine diatom Skeletonema marinoi
title_full Seawater carbonate chemistry and the growth rate of marine diatom Skeletonema marinoi
title_fullStr Seawater carbonate chemistry and the growth rate of marine diatom Skeletonema marinoi
title_full_unstemmed Seawater carbonate chemistry and the growth rate of marine diatom Skeletonema marinoi
title_short Seawater carbonate chemistry and the growth rate of marine diatom Skeletonema marinoi
title_sort seawater carbonate chemistry and the growth rate of marine diatom skeletonema marinoi
topic Alkalinity
total
Aragonite saturation state
Bicarbonate ion
Biological sample
BIOS
Block
Bottles or small containers/Aquaria (<20 L)
Calcite saturation state
Calculated using seacarb after Nisumaa et al. (2010)
Carbon
inorganic
dissolved
Carbonate ion
Carbonate system computation flag
Carbon dioxide
Chromista
Coast and continental shelf
Fugacity of carbon dioxide (water) at sea surface temperature (wet air)
Growth/Morphology
Gullmar_fjord_2013
Gullmar Fjord
Skagerrak
Sweden
Identification
Laboratory experiment
Mesocosm label
North Atlantic
OA-ICC
Ocean Acidification International Coordination Centre
Ochrophyta
Other studied parameter or process
Partial pressure of carbon dioxide (water) at sea surface temperature (wet air)
Pelagos
pH
total scale
Phosphate
Phytoplankton
Salinity
Silicate
Single species
Skeletonema marinoi
Species
unique identification
unique identification (Semantic URI)
unique identification (URI)
Temperate
Temperature
topic_facet Alkalinity
total
Aragonite saturation state
Bicarbonate ion
Biological sample
BIOS
Block
Bottles or small containers/Aquaria (<20 L)
Calcite saturation state
Calculated using seacarb after Nisumaa et al. (2010)
Carbon
inorganic
dissolved
Carbonate ion
Carbonate system computation flag
Carbon dioxide
Chromista
Coast and continental shelf
Fugacity of carbon dioxide (water) at sea surface temperature (wet air)
Growth/Morphology
Gullmar_fjord_2013
Gullmar Fjord
Skagerrak
Sweden
Identification
Laboratory experiment
Mesocosm label
North Atlantic
OA-ICC
Ocean Acidification International Coordination Centre
Ochrophyta
Other studied parameter or process
Partial pressure of carbon dioxide (water) at sea surface temperature (wet air)
Pelagos
pH
total scale
Phosphate
Phytoplankton
Salinity
Silicate
Single species
Skeletonema marinoi
Species
unique identification
unique identification (Semantic URI)
unique identification (URI)
Temperate
Temperature
url https://doi.pangaea.de/10.1594/PANGAEA.956080
https://doi.org/10.1594/PANGAEA.956080