Gridded segments of sea-ice or snow surface elevation and freeboard from helicopter-borne laser scanner during the MOSAiC expedition flight 20200510_01, version 1

This data set is a higher-processing-level version of Geolocated sea-ice or snow surface elevation point clouds from helicopter-borne laser scanner during the MOSAiC expedition, version 1 (Jutila et al., 2022; doi:10.1594/PANGAEA.950509), where the surface elevation point cloud has been converted to...

Full description

Bibliographic Details
Main Authors: Hutter, Nils, Hendricks, Stefan, Jutila, Arttu, Birnbaum, Gerit, von Albedyll, Luisa, Ricker, Robert, Haas, Christian
Format: Dataset
Language:English
Published: PANGAEA 2023
Subjects:
Online Access:https://doi.pangaea.de/10.1594/PANGAEA.950476
https://doi.org/10.1594/PANGAEA.950476
Description
Summary:This data set is a higher-processing-level version of Geolocated sea-ice or snow surface elevation point clouds from helicopter-borne laser scanner during the MOSAiC expedition, version 1 (Jutila et al., 2022; doi:10.1594/PANGAEA.950509), where the surface elevation point cloud has been converted to freeboard using automatic open water detection scheme and projected onto a regular 0.5-meter grid. The data were collected using a near-infrared, line-scanning Riegl VQ-580 airborne laser scanner (hdl:10013/sensor.7ebb63c3-dc3b-4f0f-9ca5-f1c6e5462a31 & hdl:10013/sensor.7a931b33-72ca-46d0-b623-156836ac9550) mounted in a helicopter along the MOSAiC drift from the north of the Laptev Sea, across the central Arctic Ocean, and towards the Fram Strait from September 2019 to October 2020. The flights are both small scale, ~5x5 km grid patterns mainly over the central observatory, and large scale, few tens of km away from RV Polarstern, triangle patterns, or transects. The gridded data are stored in 30-second along-track segments in netCDF format. For the small scale grid flights, the data are drift corrected using the position and heading data of RV Polarstern and elevation offset corrected using overlapping segments to overcome degraded GPS altitude data >85°N. Open water points are identified to derive a freeboard estimate from the surface elevations. For the flights with degraded GPS altitude quality, we provide only a freeboard estimate (grid pattern flights) or no freeboard (transects). The gridded 30-s segments include as data variables: surface elevation, freeboard (estimate), freeboard uncertainty, estimated sea surface height, surface reflectance, echo width, and number of points used in the interpolation. In addition, list of detected open water points and an overview figure of each flight is provided.