GRISLI 2.0 sensitivity experiments for the Antarctic ice sheet

Here we present the sensitivity experiments are conducted with the latest GRISLI version 2.0 (Quiquet et al. 2018), to model changes of the Antarctic ice sheet between 100 ka and 400 ka. GRISLI 2.0 is is a large-scale three-dimensional thermomechanical ice sheet model and the newest version of the G...

Full description

Bibliographic Details
Main Authors: Crotti, Ilaria, Quiquet, Aurélien, Landais, Amaëlle, Stenni, Barbara, Wilson, David, Severi, Mirko, Mulvaney, Rob, Wilhelms, Frank, Barbante, Carlo, Frezzotti, Massimo
Format: Dataset
Language:English
Published: PANGAEA 2022
Subjects:
Online Access:https://doi.pangaea.de/10.1594/PANGAEA.946775
https://doi.org/10.1594/PANGAEA.946775
id ftpangaea:oai:pangaea.de:doi:10.1594/PANGAEA.946775
record_format openpolar
institution Open Polar
collection PANGAEA - Data Publisher for Earth & Environmental Science
op_collection_id ftpangaea
language English
topic Antarctica
Binary Object
Binary Object (File Size)
GRISLI_Antarctic_ice_sheet
Model
modelling
Wilkes land
spellingShingle Antarctica
Binary Object
Binary Object (File Size)
GRISLI_Antarctic_ice_sheet
Model
modelling
Wilkes land
Crotti, Ilaria
Quiquet, Aurélien
Landais, Amaëlle
Stenni, Barbara
Wilson, David
Severi, Mirko
Mulvaney, Rob
Wilhelms, Frank
Barbante, Carlo
Frezzotti, Massimo
GRISLI 2.0 sensitivity experiments for the Antarctic ice sheet
topic_facet Antarctica
Binary Object
Binary Object (File Size)
GRISLI_Antarctic_ice_sheet
Model
modelling
Wilkes land
description Here we present the sensitivity experiments are conducted with the latest GRISLI version 2.0 (Quiquet et al. 2018), to model changes of the Antarctic ice sheet between 100 ka and 400 ka. GRISLI 2.0 is is a large-scale three-dimensional thermomechanical ice sheet model and the newest version of the Grenoble Ice Sheet and Land Ice model (Ritz et al. 2001). The model combines an inland ice model with an ice shelf model, extended to the case of ice streams considered as dragging ice shelves. The latest release includes a better representation of grounding line migration and a sub-glacial hydrology model. The model uses finite differences on a Cartesian grid at 5 to 40 km resolution depending on the application. Here we use a 40 km grid. The spatial coverage of the model experiments is latitude: -90/-54.6602 longitude: -180/180. For the selection of the ice sheet model parameters, we used the calibration performed in Quiquet et al. (2018) using the ensemble member labeled AN40T213 in Quiquet et al. (2018). This ensemble member uses the formulation of Tsai et al. (2015) for the imposed flux at the grounding line. The model setup used to perform the transient paleo ice sheet simulations (boundary conditions and forcings) is identical to that used by Quiquet et al. (2018). The model is forced by near-surface air temperatures over Antarctica deduced from the EDC δD record (Jouzel et al. 2007). The GRISLI simulations are performed prescribing three different oceanic forcing indexes: (i) derived from the North Atlantic ODP 980 benthic temperature record (Quiquet et al., 2018; Waelbroeck et al., 2002); (ii) derived from the stacked deep-sea benthic oxygen isotope record (LR04)(Golledge et al., 2014; Lisiecki & Raymo, 2005); and (iii) derived from the EDC δD record (Blasco et al., 2019; Golledge et al., 2014; Jouzel et al., 2007). The outputs of the model consist in the Antarctic ice sheet surface elevation changes, bedrock elevation, and ice thickness variations over the past 400 ka with a 1ka temporal resolution. In ...
format Dataset
author Crotti, Ilaria
Quiquet, Aurélien
Landais, Amaëlle
Stenni, Barbara
Wilson, David
Severi, Mirko
Mulvaney, Rob
Wilhelms, Frank
Barbante, Carlo
Frezzotti, Massimo
author_facet Crotti, Ilaria
Quiquet, Aurélien
Landais, Amaëlle
Stenni, Barbara
Wilson, David
Severi, Mirko
Mulvaney, Rob
Wilhelms, Frank
Barbante, Carlo
Frezzotti, Massimo
author_sort Crotti, Ilaria
title GRISLI 2.0 sensitivity experiments for the Antarctic ice sheet
title_short GRISLI 2.0 sensitivity experiments for the Antarctic ice sheet
title_full GRISLI 2.0 sensitivity experiments for the Antarctic ice sheet
title_fullStr GRISLI 2.0 sensitivity experiments for the Antarctic ice sheet
title_full_unstemmed GRISLI 2.0 sensitivity experiments for the Antarctic ice sheet
title_sort grisli 2.0 sensitivity experiments for the antarctic ice sheet
publisher PANGAEA
publishDate 2022
url https://doi.pangaea.de/10.1594/PANGAEA.946775
https://doi.org/10.1594/PANGAEA.946775
op_coverage MEDIAN LATITUDE: -72.330100 * MEDIAN LONGITUDE: 180.000000 * SOUTH-BOUND LATITUDE: -90.000000 * WEST-BOUND LONGITUDE: 180.000000 * NORTH-BOUND LATITUDE: -54.660200 * EAST-BOUND LONGITUDE: 180.000000
long_lat ENVELOPE(180.000000,180.000000,-54.660200,-90.000000)
genre Antarc*
Antarctic
Antarctica
Ice Sheet
Ice Shelf
Ice Shelves
Journal of Glaciology
North Atlantic
Wilkes Land
genre_facet Antarc*
Antarctic
Antarctica
Ice Sheet
Ice Shelf
Ice Shelves
Journal of Glaciology
North Atlantic
Wilkes Land
op_relation Crotti, Ilaria; Quiquet, Aurélien; Landais, Amaëlle; Stenni, Barbara; Wilson, David J; Severi, Mirko; Mulvaney, Robert; Wilhelms, Frank; Barbante, Carlo; Frezzotti, Massimo (2022): Wilkes subglacial basin ice sheet response to Southern Ocean warming during late Pleistocene interglacials. Nature Communications, 13(1), 5328, https://doi.org/10.1038/s41467-022-32847-3
Blasco, Javier; Tabone, Ilaria; Alvarez-Solas, Jorge; Robinson, Alexander; Montoya, Marisa (2019): The Antarctic Ice Sheet response to glacial millennial-scale variability. Climate of the Past, 15(1), 121-133, https://doi.org/10.5194/cp-15-121-2019
Golledge, Nicholas R; Menviel, Laurie; Carter, L; Fogwill, C J; England, M H; Cortese, Giuseppe; Levy, R H (2014): Antarctic contribution to meltwater pulse 1A from reduced Southern Ocean overturning. Nature Communications, 5(1), 5107, https://doi.org/10.1038/ncomms6107
Jouzel, Jean; Masson-Delmotte, Valerie; Cattani, Olivier; Dreyfus, Gabrielle; Falourd, Sonia; Hoffmann, G; Minster, Bénédicte; Nouet, Julius; Barnola, Jean-Marc; Chappellaz, Jérôme A; Fischer, Hubertus; Gallet, J C; Johnsen, Sigfús Jóhann; Leuenberger, Markus Christian; Loulergue, Laetitia; Luethi, D; Oerter, Hans; Parrenin, Frédéric; Raisbeck, Grant M; Raynaud, Dominique; Schilt, Adrian; Schwander, Jakob; Selmo, Enricomaria; Souchez, Roland A; Spahni, Renato; Stauffer, Bernhard; Steffensen, Jørgen Peder; Stenni, Barbara; Stocker, Thomas F; Tison, Jean-Louis; Werner, Martin; Wolff, Eric William (2007): Orbital and millennial Antarctic climate variability over the past 800,000 years. Science, 317(5839), 793-797, https://doi.org/10.1126/science.1141038
Lisiecki, Lorraine E; Raymo, Maureen E (2005): A Pliocene-Pleistocene stack of 57 globally distributed benthic d18O records. Paleoceanography, 20, PA1003, https://doi.org/10.1029/2004PA001071
Quiquet, Aurélien; Dumas, Christophe; Ritz, Catherine; Peyaud, Vincent; Roche, Didier M (2018): The GRISLI ice sheet model (version 2.0): calibration and validation for multi-millennial changes of the Antarctic ice sheet. Geoscientific Model Development, 11(12), 5003-5025, https://doi.org/10.5194/gmd-11-5003-2018
Ritz, Catherine; Rommelaere, Vincent; Dumas, Christophe (2001): Modeling the evolution of Antarctic ice sheet over the last 420,000 years: Implications for altitude changes in the Vostok region. Journal of Geophysical Research: Atmospheres, 106(D23), 31943-31964, https://doi.org/10.1029/2001JD900232
Tsai, Victor C; Stewart, Andrew L; Thompson, Andrew F (2015): Marine ice-sheet profiles and stability under Coulomb basal conditions. Journal of Glaciology, 61(226), 205-215, https://doi.org/10.3189/2015JoG14J221
Waelbroeck, Claire; Labeyrie, Laurent D; Michel, Elisabeth; Duplessy, Jean-Claude; McManus, Jerry F; Lambeck, Kurt; Balbon, Estelle; Labracherie, Monique (2002): Sea-level and deep water temperature changes derived from benthic foraminifera isotopic records. Quaternary Science Reviews, 21(1-3), 295-305, https://doi.org/10.1016/S0277-3791(01)00101-9
https://doi.pangaea.de/10.1594/PANGAEA.946775
https://doi.org/10.1594/PANGAEA.946775
op_rights CC-BY-4.0: Creative Commons Attribution 4.0 International
Access constraints: unrestricted
info:eu-repo/semantics/openAccess
op_doi https://doi.org/10.1594/PANGAEA.94677510.1038/s41467-022-32847-310.5194/cp-15-121-201910.1038/ncomms610710.1126/science.114103810.1029/2004PA00107110.5194/gmd-11-5003-201810.1029/2001JD90023210.3189/2015JoG14J22110.1016/S0277-3791(01)00101-9
_version_ 1810489334476832768
spelling ftpangaea:oai:pangaea.de:doi:10.1594/PANGAEA.946775 2024-09-15T17:42:40+00:00 GRISLI 2.0 sensitivity experiments for the Antarctic ice sheet Crotti, Ilaria Quiquet, Aurélien Landais, Amaëlle Stenni, Barbara Wilson, David Severi, Mirko Mulvaney, Rob Wilhelms, Frank Barbante, Carlo Frezzotti, Massimo MEDIAN LATITUDE: -72.330100 * MEDIAN LONGITUDE: 180.000000 * SOUTH-BOUND LATITUDE: -90.000000 * WEST-BOUND LONGITUDE: 180.000000 * NORTH-BOUND LATITUDE: -54.660200 * EAST-BOUND LONGITUDE: 180.000000 2022 text/tab-separated-values, 3 data points https://doi.pangaea.de/10.1594/PANGAEA.946775 https://doi.org/10.1594/PANGAEA.946775 en eng PANGAEA Crotti, Ilaria; Quiquet, Aurélien; Landais, Amaëlle; Stenni, Barbara; Wilson, David J; Severi, Mirko; Mulvaney, Robert; Wilhelms, Frank; Barbante, Carlo; Frezzotti, Massimo (2022): Wilkes subglacial basin ice sheet response to Southern Ocean warming during late Pleistocene interglacials. Nature Communications, 13(1), 5328, https://doi.org/10.1038/s41467-022-32847-3 Blasco, Javier; Tabone, Ilaria; Alvarez-Solas, Jorge; Robinson, Alexander; Montoya, Marisa (2019): The Antarctic Ice Sheet response to glacial millennial-scale variability. Climate of the Past, 15(1), 121-133, https://doi.org/10.5194/cp-15-121-2019 Golledge, Nicholas R; Menviel, Laurie; Carter, L; Fogwill, C J; England, M H; Cortese, Giuseppe; Levy, R H (2014): Antarctic contribution to meltwater pulse 1A from reduced Southern Ocean overturning. Nature Communications, 5(1), 5107, https://doi.org/10.1038/ncomms6107 Jouzel, Jean; Masson-Delmotte, Valerie; Cattani, Olivier; Dreyfus, Gabrielle; Falourd, Sonia; Hoffmann, G; Minster, Bénédicte; Nouet, Julius; Barnola, Jean-Marc; Chappellaz, Jérôme A; Fischer, Hubertus; Gallet, J C; Johnsen, Sigfús Jóhann; Leuenberger, Markus Christian; Loulergue, Laetitia; Luethi, D; Oerter, Hans; Parrenin, Frédéric; Raisbeck, Grant M; Raynaud, Dominique; Schilt, Adrian; Schwander, Jakob; Selmo, Enricomaria; Souchez, Roland A; Spahni, Renato; Stauffer, Bernhard; Steffensen, Jørgen Peder; Stenni, Barbara; Stocker, Thomas F; Tison, Jean-Louis; Werner, Martin; Wolff, Eric William (2007): Orbital and millennial Antarctic climate variability over the past 800,000 years. Science, 317(5839), 793-797, https://doi.org/10.1126/science.1141038 Lisiecki, Lorraine E; Raymo, Maureen E (2005): A Pliocene-Pleistocene stack of 57 globally distributed benthic d18O records. Paleoceanography, 20, PA1003, https://doi.org/10.1029/2004PA001071 Quiquet, Aurélien; Dumas, Christophe; Ritz, Catherine; Peyaud, Vincent; Roche, Didier M (2018): The GRISLI ice sheet model (version 2.0): calibration and validation for multi-millennial changes of the Antarctic ice sheet. Geoscientific Model Development, 11(12), 5003-5025, https://doi.org/10.5194/gmd-11-5003-2018 Ritz, Catherine; Rommelaere, Vincent; Dumas, Christophe (2001): Modeling the evolution of Antarctic ice sheet over the last 420,000 years: Implications for altitude changes in the Vostok region. Journal of Geophysical Research: Atmospheres, 106(D23), 31943-31964, https://doi.org/10.1029/2001JD900232 Tsai, Victor C; Stewart, Andrew L; Thompson, Andrew F (2015): Marine ice-sheet profiles and stability under Coulomb basal conditions. Journal of Glaciology, 61(226), 205-215, https://doi.org/10.3189/2015JoG14J221 Waelbroeck, Claire; Labeyrie, Laurent D; Michel, Elisabeth; Duplessy, Jean-Claude; McManus, Jerry F; Lambeck, Kurt; Balbon, Estelle; Labracherie, Monique (2002): Sea-level and deep water temperature changes derived from benthic foraminifera isotopic records. Quaternary Science Reviews, 21(1-3), 295-305, https://doi.org/10.1016/S0277-3791(01)00101-9 https://doi.pangaea.de/10.1594/PANGAEA.946775 https://doi.org/10.1594/PANGAEA.946775 CC-BY-4.0: Creative Commons Attribution 4.0 International Access constraints: unrestricted info:eu-repo/semantics/openAccess Antarctica Binary Object Binary Object (File Size) GRISLI_Antarctic_ice_sheet Model modelling Wilkes land dataset 2022 ftpangaea https://doi.org/10.1594/PANGAEA.94677510.1038/s41467-022-32847-310.5194/cp-15-121-201910.1038/ncomms610710.1126/science.114103810.1029/2004PA00107110.5194/gmd-11-5003-201810.1029/2001JD90023210.3189/2015JoG14J22110.1016/S0277-3791(01)00101-9 2024-07-24T02:31:34Z Here we present the sensitivity experiments are conducted with the latest GRISLI version 2.0 (Quiquet et al. 2018), to model changes of the Antarctic ice sheet between 100 ka and 400 ka. GRISLI 2.0 is is a large-scale three-dimensional thermomechanical ice sheet model and the newest version of the Grenoble Ice Sheet and Land Ice model (Ritz et al. 2001). The model combines an inland ice model with an ice shelf model, extended to the case of ice streams considered as dragging ice shelves. The latest release includes a better representation of grounding line migration and a sub-glacial hydrology model. The model uses finite differences on a Cartesian grid at 5 to 40 km resolution depending on the application. Here we use a 40 km grid. The spatial coverage of the model experiments is latitude: -90/-54.6602 longitude: -180/180. For the selection of the ice sheet model parameters, we used the calibration performed in Quiquet et al. (2018) using the ensemble member labeled AN40T213 in Quiquet et al. (2018). This ensemble member uses the formulation of Tsai et al. (2015) for the imposed flux at the grounding line. The model setup used to perform the transient paleo ice sheet simulations (boundary conditions and forcings) is identical to that used by Quiquet et al. (2018). The model is forced by near-surface air temperatures over Antarctica deduced from the EDC δD record (Jouzel et al. 2007). The GRISLI simulations are performed prescribing three different oceanic forcing indexes: (i) derived from the North Atlantic ODP 980 benthic temperature record (Quiquet et al., 2018; Waelbroeck et al., 2002); (ii) derived from the stacked deep-sea benthic oxygen isotope record (LR04)(Golledge et al., 2014; Lisiecki & Raymo, 2005); and (iii) derived from the EDC δD record (Blasco et al., 2019; Golledge et al., 2014; Jouzel et al., 2007). The outputs of the model consist in the Antarctic ice sheet surface elevation changes, bedrock elevation, and ice thickness variations over the past 400 ka with a 1ka temporal resolution. In ... Dataset Antarc* Antarctic Antarctica Ice Sheet Ice Shelf Ice Shelves Journal of Glaciology North Atlantic Wilkes Land PANGAEA - Data Publisher for Earth & Environmental Science ENVELOPE(180.000000,180.000000,-54.660200,-90.000000)