Remote sensing reflectance measured in the South China Sea and Sulu Sea during RV Sonne cruise SO218 from 18 to 27 November 2011

We present a data set on remote sensing reflectance (RRS) at 1nm resolution from 350 to 800nm obtained from measurements in the coastal and open ocean areas of the South China Sea and Sulu Sea from 18 to 27 November 2011. For the measurements we used radiometric hyperspectral (3.3 nm sampling, 10 nm...

Full description

Bibliographic Details
Main Authors: Bracher, Astrid, Cheah, Wee
Format: Dataset
Language:English
Published: PANGAEA 2022
Subjects:
Online Access:https://doi.pangaea.de/10.1594/PANGAEA.946368
https://doi.org/10.1594/PANGAEA.946368
id ftpangaea:oai:pangaea.de:doi:10.1594/PANGAEA.946368
record_format openpolar
institution Open Polar
collection PANGAEA - Data Publisher for Earth & Environmental Science
op_collection_id ftpangaea
language English
topic Apparent optical properties
DATE/TIME
DEPTH
water
Event label
Identification
Latitude of event
Longitude of event
RAMSES
RAMSES hyperspectral radiometer
remote sensing reflectance
Remote sensing reflectance at 350 nm
Remote sensing reflectance at 351 nm
Remote sensing reflectance at 352 nm
Remote sensing reflectance at 353 nm
Remote sensing reflectance at 354 nm
Remote sensing reflectance at 355 nm
Remote sensing reflectance at 356 nm
Remote sensing reflectance at 357 nm
Remote sensing reflectance at 358 nm
Remote sensing reflectance at 359 nm
Remote sensing reflectance at 360 nm
Remote sensing reflectance at 361 nm
Remote sensing reflectance at 362 nm
Remote sensing reflectance at 363 nm
Remote sensing reflectance at 364 nm
Remote sensing reflectance at 365 nm
Remote sensing reflectance at 366 nm
Remote sensing reflectance at 367 nm
Remote sensing reflectance at 368 nm
Remote sensing reflectance at 369 nm
Remote sensing reflectance at 370 nm
Remote sensing reflectance at 371 nm
Remote sensing reflectance at 372 nm
Remote sensing reflectance at 373 nm
Remote sensing reflectance at 374 nm
Remote sensing reflectance at 375 nm
Remote sensing reflectance at 376 nm
Remote sensing reflectance at 377 nm
Remote sensing reflectance at 378 nm
Remote sensing reflectance at 379 nm
Remote sensing reflectance at 380 nm
Remote sensing reflectance at 381 nm
Remote sensing reflectance at 382 nm
Remote sensing reflectance at 383 nm
Remote sensing reflectance at 384 nm
Remote sensing reflectance at 385 nm
Remote sensing reflectance at 386 nm
Remote sensing reflectance at 387 nm
Remote sensing reflectance at 388 nm
spellingShingle Apparent optical properties
DATE/TIME
DEPTH
water
Event label
Identification
Latitude of event
Longitude of event
RAMSES
RAMSES hyperspectral radiometer
remote sensing reflectance
Remote sensing reflectance at 350 nm
Remote sensing reflectance at 351 nm
Remote sensing reflectance at 352 nm
Remote sensing reflectance at 353 nm
Remote sensing reflectance at 354 nm
Remote sensing reflectance at 355 nm
Remote sensing reflectance at 356 nm
Remote sensing reflectance at 357 nm
Remote sensing reflectance at 358 nm
Remote sensing reflectance at 359 nm
Remote sensing reflectance at 360 nm
Remote sensing reflectance at 361 nm
Remote sensing reflectance at 362 nm
Remote sensing reflectance at 363 nm
Remote sensing reflectance at 364 nm
Remote sensing reflectance at 365 nm
Remote sensing reflectance at 366 nm
Remote sensing reflectance at 367 nm
Remote sensing reflectance at 368 nm
Remote sensing reflectance at 369 nm
Remote sensing reflectance at 370 nm
Remote sensing reflectance at 371 nm
Remote sensing reflectance at 372 nm
Remote sensing reflectance at 373 nm
Remote sensing reflectance at 374 nm
Remote sensing reflectance at 375 nm
Remote sensing reflectance at 376 nm
Remote sensing reflectance at 377 nm
Remote sensing reflectance at 378 nm
Remote sensing reflectance at 379 nm
Remote sensing reflectance at 380 nm
Remote sensing reflectance at 381 nm
Remote sensing reflectance at 382 nm
Remote sensing reflectance at 383 nm
Remote sensing reflectance at 384 nm
Remote sensing reflectance at 385 nm
Remote sensing reflectance at 386 nm
Remote sensing reflectance at 387 nm
Remote sensing reflectance at 388 nm
Bracher, Astrid
Cheah, Wee
Remote sensing reflectance measured in the South China Sea and Sulu Sea during RV Sonne cruise SO218 from 18 to 27 November 2011
topic_facet Apparent optical properties
DATE/TIME
DEPTH
water
Event label
Identification
Latitude of event
Longitude of event
RAMSES
RAMSES hyperspectral radiometer
remote sensing reflectance
Remote sensing reflectance at 350 nm
Remote sensing reflectance at 351 nm
Remote sensing reflectance at 352 nm
Remote sensing reflectance at 353 nm
Remote sensing reflectance at 354 nm
Remote sensing reflectance at 355 nm
Remote sensing reflectance at 356 nm
Remote sensing reflectance at 357 nm
Remote sensing reflectance at 358 nm
Remote sensing reflectance at 359 nm
Remote sensing reflectance at 360 nm
Remote sensing reflectance at 361 nm
Remote sensing reflectance at 362 nm
Remote sensing reflectance at 363 nm
Remote sensing reflectance at 364 nm
Remote sensing reflectance at 365 nm
Remote sensing reflectance at 366 nm
Remote sensing reflectance at 367 nm
Remote sensing reflectance at 368 nm
Remote sensing reflectance at 369 nm
Remote sensing reflectance at 370 nm
Remote sensing reflectance at 371 nm
Remote sensing reflectance at 372 nm
Remote sensing reflectance at 373 nm
Remote sensing reflectance at 374 nm
Remote sensing reflectance at 375 nm
Remote sensing reflectance at 376 nm
Remote sensing reflectance at 377 nm
Remote sensing reflectance at 378 nm
Remote sensing reflectance at 379 nm
Remote sensing reflectance at 380 nm
Remote sensing reflectance at 381 nm
Remote sensing reflectance at 382 nm
Remote sensing reflectance at 383 nm
Remote sensing reflectance at 384 nm
Remote sensing reflectance at 385 nm
Remote sensing reflectance at 386 nm
Remote sensing reflectance at 387 nm
Remote sensing reflectance at 388 nm
description We present a data set on remote sensing reflectance (RRS) at 1nm resolution from 350 to 800nm obtained from measurements in the coastal and open ocean areas of the South China Sea and Sulu Sea from 18 to 27 November 2011. For the measurements we used radiometric hyperspectral (3.3 nm sampling, 10 nm FWHM) underwater profile measurements down to the 0.1 % light level using RAMSES (TriOS GmbH, Germany) sensors which measured depth resolved the upwelling radiance and downwelling irradiance, both corrected by incident sunlight fluctuations with a second RAMSES sensor measuring the above water downwelling irradiance. The later sensor data were also used to finally calculate RRS. We followed the protocol by Mueller et al. (2003) further modified by Matsuoka et al. (2007) and Stramski et al. (2008), as described for our instrument set-up in Taylor et al. (2011). Our method is further described and assessed for its uncertainty in Tilstone et al. (2020). The campaign is described in detail in Cheah et al. (2013) and was also optical constituents hyperspectral absorption data (Bracher et al. 2021a, b) and phytoplankton pigments (Bracher 2014) were measured.
format Dataset
author Bracher, Astrid
Cheah, Wee
author_facet Bracher, Astrid
Cheah, Wee
author_sort Bracher, Astrid
title Remote sensing reflectance measured in the South China Sea and Sulu Sea during RV Sonne cruise SO218 from 18 to 27 November 2011
title_short Remote sensing reflectance measured in the South China Sea and Sulu Sea during RV Sonne cruise SO218 from 18 to 27 November 2011
title_full Remote sensing reflectance measured in the South China Sea and Sulu Sea during RV Sonne cruise SO218 from 18 to 27 November 2011
title_fullStr Remote sensing reflectance measured in the South China Sea and Sulu Sea during RV Sonne cruise SO218 from 18 to 27 November 2011
title_full_unstemmed Remote sensing reflectance measured in the South China Sea and Sulu Sea during RV Sonne cruise SO218 from 18 to 27 November 2011
title_sort remote sensing reflectance measured in the south china sea and sulu sea during rv sonne cruise so218 from 18 to 27 november 2011
publisher PANGAEA
publishDate 2022
url https://doi.pangaea.de/10.1594/PANGAEA.946368
https://doi.org/10.1594/PANGAEA.946368
op_coverage MEDIAN LATITUDE: 6.639527 * MEDIAN LONGITUDE: 117.477748 * SOUTH-BOUND LATITUDE: 2.407170 * WEST-BOUND LONGITUDE: 110.569170 * NORTH-BOUND LATITUDE: 9.386000 * EAST-BOUND LONGITUDE: 120.295000 * DATE/TIME START: 2011-11-18T08:20:59 * DATE/TIME END: 2011-11-27T07:18:59 * MINIMUM DEPTH, water: 0 m * MAXIMUM DEPTH, water: 0 m
long_lat ENVELOPE(110.569170,120.295000,9.386000,2.407170)
genre Arctic
genre_facet Arctic
op_relation Lehmann, Moritz K; Gurlin, Daniela; Pahlevan, Nima; Alikas, Krista; Anstee, Janet M; Balasubramanian, Sundarabalan V; Barbosa, Cláudio C F; Binding, Caren; Bracher, Astrid; Bresciani, Mariano; Burtner, Ashley; Cao, Zhigang; Dekker, Arnold G; Di Vittorio, Courtney; Drayson, Nathan; Errera, Reagan M; Fernandez, Virginia; Ficek, Dariusz; Fichot, Cédric G; Gege, Peter; Giardino, Claudia; Gitelson, Anatoly A; Greb, Steven R; Henderson, Hayden; Higa, Hiroto; Irani Rahaghi, Abolfazl; Jamet, Cédric; Jiang, Dalin; Jordan, Thomas; Kangro, Kersti; Kravitz, Jeremy A; Kristoffersen, Arne S; Kudela, Raphael; Li, Lin; Ligi, Martin; Loisel, Hubert; Lohrenz, Steven; Ma, Ronghua; Maciel, Daniel A; Malthus, Tim J; Matsushita, Bunkei; Matthews, Mark; Minaudo, Camille; Mishra, Deepak R; Mishra, Sachidananda; Moore, Tim; Moses, Wesley J; Nguyen, Hà; Novo, Evlyn M L M; Novoa, Stéfani; Odermatt, Daniel; O'Donnell, David M; Olmanson, Leif G; Ondrusek, Michael; Oppelt, Natascha; Ouillon, Sylvain; Pereira Filho, Waterloo; Plattner, Stefan; Ruiz Verdú, Antonio; Salem, Salem I; Schalles, John F; Simis, Stefan G H; Siswanto, Eko; Smith, Brandon; Somlai-Schweiger, Ian; Soppa, Mariana A; Spyrakos, Evangelos; Tessin, Elinor; van der Woerd, Hendrik J; Vander Woude, Andrea J; Vandermeulen, Ryan A; Vantrepotte, Vincent; Wernand, Marcel Robert; Werther, Mortimer; Young, Kyana; Yue, Linwei (2023): GLORIA - A globally representative hyperspectral in situ dataset for optical sensing of water quality. Scientific Data, 10(1), 100, https://doi.org/10.1038/s41597-023-01973-y
Bracher, Astrid (2014): Phytoplankton pigments measured on water bottle samples during SONNE cruise SO218 [dataset]. Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, PANGAEA, https://doi.org/10.1594/PANGAEA.848589
Bracher, Astrid; Taylor, Bettina B; Cheah, Wee (2021): Particulate absorption during RV Sonne expedition SO218 [dataset]. PANGAEA, https://doi.org/10.1594/PANGAEA.936553
Bracher, Astrid; Taylor, Bettina B; Cheah, Wee (2021): Phytoplankton absorption during SONNE cruise SO218 [dataset]. PANGAEA, https://doi.org/10.1594/PANGAEA.937982
Cheah, Wee; Taylor, Bettina B; Wiegmann, Sonja; Raimund, Stefan; Krahmann, Gerd; Quack, Birgit; Bracher, Astrid (2013): Photophysiological state of natural phytoplankton communities in the South China Sea and Sulu Sea. Biogeosciences Discussions, 10, 12115-12153, https://doi.org/10.5194/bgd-10-12115-2013
Matsuoka, Atsushi; Huot, Yannick; Shimada, Koji; Saitoh, Sei-Ichi; Babin, Marcel (2007): Bio-optical characteristics of the western Arctic Ocean: implications for ocean color algorithms. Canadian Journal of Remote Sensing, 33(6), 503-518, https://doi.org/10.5589/m07-059
Mueller, James L; Fargion, Giulietta; McClain, Charles (2003): Ocean Optics Protocols for Satellite Ocean Color Sensor Validation; Revision 4; Radiometric Measurements and Data Analysis Protocols. NASA Goddard Space Flight Center: Greenbelt, MD, USA, III, https://doi.org/10.25607/OBP-62
Stramski, Dariusz; Reynolds, Rick A; Babin, Marcel; Kaczmarek, S; Lewis, Marlon R; Röttgers, Rüdiger; Sciandra, Antoine; Stramska, M; Twardowski, Michael S; Franz, B A; Claustre, Hervé (2008): Relationships between the surface concentration of particulate organic carbon and optical properties in the eastern South Pacific and eastern Atlantic Oceans. Biogeosciences, 5, 171-201, https://doi.org/10.5194/bg-5-171-2008
Taylor, Bettina B; Torrecilla, Elena; Bernhardt, Anja; Taylor, Marc H; Peeken, Ilka; Röttgers, Rüdiger; Piera, Jaume; Bracher, Astrid (2011): Bio-optical provinces in the eastern Atlantic Ocean and their biogeographical relevance. Biogeosciences, 8(12), 3609-3629, https://doi.org/10.5194/bg-8-3609-2011
Tilstone, Gavin; Dall'Olmo, Giorgio; Hieronymi, Martin; Ruddick, Kevin; Beck, Matthew; Ligi, M; Costa, Maycira; D'Alimonte, Davide; Vellucci, Vincenzo; Vansteenwegen, Dieter; Bracher, Astrid; Wiegmann, Sonja; Kuusk, Joel; Vabson, Viktor; Ansko, Ilmar; Vendt, Riho; Donlon, Craig; Casal, Tânia (2020): Field Intercomparison of Radiometer Measurements for Ocean Colour Validation. Remote Sensing, 12(10), 1587, https://doi.org/10.3390/rs12101587
https://doi.pangaea.de/10.1594/PANGAEA.946368
https://doi.org/10.1594/PANGAEA.946368
op_rights CC-BY-4.0: Creative Commons Attribution 4.0 International
Access constraints: unrestricted
info:eu-repo/semantics/openAccess
op_doi https://doi.org/10.1594/PANGAEA.94636810.1038/s41597-023-01973-y10.1594/PANGAEA.84858910.1594/PANGAEA.93655310.1594/PANGAEA.93798210.5194/bgd-10-12115-201310.5589/m07-05910.25607/OBP-6210.5194/bg-5-171-200810.5194/bg-8-3609-201110.3390/rs12101587
_version_ 1810294134474276864
spelling ftpangaea:oai:pangaea.de:doi:10.1594/PANGAEA.946368 2024-09-15T17:52:04+00:00 Remote sensing reflectance measured in the South China Sea and Sulu Sea during RV Sonne cruise SO218 from 18 to 27 November 2011 Bracher, Astrid Cheah, Wee MEDIAN LATITUDE: 6.639527 * MEDIAN LONGITUDE: 117.477748 * SOUTH-BOUND LATITUDE: 2.407170 * WEST-BOUND LONGITUDE: 110.569170 * NORTH-BOUND LATITUDE: 9.386000 * EAST-BOUND LONGITUDE: 120.295000 * DATE/TIME START: 2011-11-18T08:20:59 * DATE/TIME END: 2011-11-27T07:18:59 * MINIMUM DEPTH, water: 0 m * MAXIMUM DEPTH, water: 0 m 2022 text/tab-separated-values, 2712 data points https://doi.pangaea.de/10.1594/PANGAEA.946368 https://doi.org/10.1594/PANGAEA.946368 en eng PANGAEA Lehmann, Moritz K; Gurlin, Daniela; Pahlevan, Nima; Alikas, Krista; Anstee, Janet M; Balasubramanian, Sundarabalan V; Barbosa, Cláudio C F; Binding, Caren; Bracher, Astrid; Bresciani, Mariano; Burtner, Ashley; Cao, Zhigang; Dekker, Arnold G; Di Vittorio, Courtney; Drayson, Nathan; Errera, Reagan M; Fernandez, Virginia; Ficek, Dariusz; Fichot, Cédric G; Gege, Peter; Giardino, Claudia; Gitelson, Anatoly A; Greb, Steven R; Henderson, Hayden; Higa, Hiroto; Irani Rahaghi, Abolfazl; Jamet, Cédric; Jiang, Dalin; Jordan, Thomas; Kangro, Kersti; Kravitz, Jeremy A; Kristoffersen, Arne S; Kudela, Raphael; Li, Lin; Ligi, Martin; Loisel, Hubert; Lohrenz, Steven; Ma, Ronghua; Maciel, Daniel A; Malthus, Tim J; Matsushita, Bunkei; Matthews, Mark; Minaudo, Camille; Mishra, Deepak R; Mishra, Sachidananda; Moore, Tim; Moses, Wesley J; Nguyen, Hà; Novo, Evlyn M L M; Novoa, Stéfani; Odermatt, Daniel; O'Donnell, David M; Olmanson, Leif G; Ondrusek, Michael; Oppelt, Natascha; Ouillon, Sylvain; Pereira Filho, Waterloo; Plattner, Stefan; Ruiz Verdú, Antonio; Salem, Salem I; Schalles, John F; Simis, Stefan G H; Siswanto, Eko; Smith, Brandon; Somlai-Schweiger, Ian; Soppa, Mariana A; Spyrakos, Evangelos; Tessin, Elinor; van der Woerd, Hendrik J; Vander Woude, Andrea J; Vandermeulen, Ryan A; Vantrepotte, Vincent; Wernand, Marcel Robert; Werther, Mortimer; Young, Kyana; Yue, Linwei (2023): GLORIA - A globally representative hyperspectral in situ dataset for optical sensing of water quality. Scientific Data, 10(1), 100, https://doi.org/10.1038/s41597-023-01973-y Bracher, Astrid (2014): Phytoplankton pigments measured on water bottle samples during SONNE cruise SO218 [dataset]. Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, PANGAEA, https://doi.org/10.1594/PANGAEA.848589 Bracher, Astrid; Taylor, Bettina B; Cheah, Wee (2021): Particulate absorption during RV Sonne expedition SO218 [dataset]. PANGAEA, https://doi.org/10.1594/PANGAEA.936553 Bracher, Astrid; Taylor, Bettina B; Cheah, Wee (2021): Phytoplankton absorption during SONNE cruise SO218 [dataset]. PANGAEA, https://doi.org/10.1594/PANGAEA.937982 Cheah, Wee; Taylor, Bettina B; Wiegmann, Sonja; Raimund, Stefan; Krahmann, Gerd; Quack, Birgit; Bracher, Astrid (2013): Photophysiological state of natural phytoplankton communities in the South China Sea and Sulu Sea. Biogeosciences Discussions, 10, 12115-12153, https://doi.org/10.5194/bgd-10-12115-2013 Matsuoka, Atsushi; Huot, Yannick; Shimada, Koji; Saitoh, Sei-Ichi; Babin, Marcel (2007): Bio-optical characteristics of the western Arctic Ocean: implications for ocean color algorithms. Canadian Journal of Remote Sensing, 33(6), 503-518, https://doi.org/10.5589/m07-059 Mueller, James L; Fargion, Giulietta; McClain, Charles (2003): Ocean Optics Protocols for Satellite Ocean Color Sensor Validation; Revision 4; Radiometric Measurements and Data Analysis Protocols. NASA Goddard Space Flight Center: Greenbelt, MD, USA, III, https://doi.org/10.25607/OBP-62 Stramski, Dariusz; Reynolds, Rick A; Babin, Marcel; Kaczmarek, S; Lewis, Marlon R; Röttgers, Rüdiger; Sciandra, Antoine; Stramska, M; Twardowski, Michael S; Franz, B A; Claustre, Hervé (2008): Relationships between the surface concentration of particulate organic carbon and optical properties in the eastern South Pacific and eastern Atlantic Oceans. Biogeosciences, 5, 171-201, https://doi.org/10.5194/bg-5-171-2008 Taylor, Bettina B; Torrecilla, Elena; Bernhardt, Anja; Taylor, Marc H; Peeken, Ilka; Röttgers, Rüdiger; Piera, Jaume; Bracher, Astrid (2011): Bio-optical provinces in the eastern Atlantic Ocean and their biogeographical relevance. Biogeosciences, 8(12), 3609-3629, https://doi.org/10.5194/bg-8-3609-2011 Tilstone, Gavin; Dall'Olmo, Giorgio; Hieronymi, Martin; Ruddick, Kevin; Beck, Matthew; Ligi, M; Costa, Maycira; D'Alimonte, Davide; Vellucci, Vincenzo; Vansteenwegen, Dieter; Bracher, Astrid; Wiegmann, Sonja; Kuusk, Joel; Vabson, Viktor; Ansko, Ilmar; Vendt, Riho; Donlon, Craig; Casal, Tânia (2020): Field Intercomparison of Radiometer Measurements for Ocean Colour Validation. Remote Sensing, 12(10), 1587, https://doi.org/10.3390/rs12101587 https://doi.pangaea.de/10.1594/PANGAEA.946368 https://doi.org/10.1594/PANGAEA.946368 CC-BY-4.0: Creative Commons Attribution 4.0 International Access constraints: unrestricted info:eu-repo/semantics/openAccess Apparent optical properties DATE/TIME DEPTH water Event label Identification Latitude of event Longitude of event RAMSES RAMSES hyperspectral radiometer remote sensing reflectance Remote sensing reflectance at 350 nm Remote sensing reflectance at 351 nm Remote sensing reflectance at 352 nm Remote sensing reflectance at 353 nm Remote sensing reflectance at 354 nm Remote sensing reflectance at 355 nm Remote sensing reflectance at 356 nm Remote sensing reflectance at 357 nm Remote sensing reflectance at 358 nm Remote sensing reflectance at 359 nm Remote sensing reflectance at 360 nm Remote sensing reflectance at 361 nm Remote sensing reflectance at 362 nm Remote sensing reflectance at 363 nm Remote sensing reflectance at 364 nm Remote sensing reflectance at 365 nm Remote sensing reflectance at 366 nm Remote sensing reflectance at 367 nm Remote sensing reflectance at 368 nm Remote sensing reflectance at 369 nm Remote sensing reflectance at 370 nm Remote sensing reflectance at 371 nm Remote sensing reflectance at 372 nm Remote sensing reflectance at 373 nm Remote sensing reflectance at 374 nm Remote sensing reflectance at 375 nm Remote sensing reflectance at 376 nm Remote sensing reflectance at 377 nm Remote sensing reflectance at 378 nm Remote sensing reflectance at 379 nm Remote sensing reflectance at 380 nm Remote sensing reflectance at 381 nm Remote sensing reflectance at 382 nm Remote sensing reflectance at 383 nm Remote sensing reflectance at 384 nm Remote sensing reflectance at 385 nm Remote sensing reflectance at 386 nm Remote sensing reflectance at 387 nm Remote sensing reflectance at 388 nm dataset 2022 ftpangaea https://doi.org/10.1594/PANGAEA.94636810.1038/s41597-023-01973-y10.1594/PANGAEA.84858910.1594/PANGAEA.93655310.1594/PANGAEA.93798210.5194/bgd-10-12115-201310.5589/m07-05910.25607/OBP-6210.5194/bg-5-171-200810.5194/bg-8-3609-201110.3390/rs12101587 2024-09-03T23:52:03Z We present a data set on remote sensing reflectance (RRS) at 1nm resolution from 350 to 800nm obtained from measurements in the coastal and open ocean areas of the South China Sea and Sulu Sea from 18 to 27 November 2011. For the measurements we used radiometric hyperspectral (3.3 nm sampling, 10 nm FWHM) underwater profile measurements down to the 0.1 % light level using RAMSES (TriOS GmbH, Germany) sensors which measured depth resolved the upwelling radiance and downwelling irradiance, both corrected by incident sunlight fluctuations with a second RAMSES sensor measuring the above water downwelling irradiance. The later sensor data were also used to finally calculate RRS. We followed the protocol by Mueller et al. (2003) further modified by Matsuoka et al. (2007) and Stramski et al. (2008), as described for our instrument set-up in Taylor et al. (2011). Our method is further described and assessed for its uncertainty in Tilstone et al. (2020). The campaign is described in detail in Cheah et al. (2013) and was also optical constituents hyperspectral absorption data (Bracher et al. 2021a, b) and phytoplankton pigments (Bracher 2014) were measured. Dataset Arctic PANGAEA - Data Publisher for Earth & Environmental Science ENVELOPE(110.569170,120.295000,9.386000,2.407170)