Global compilation of brGDGT lipid distributions, temperature, and pH across a dozen sample types

Lipid and environmental data were compiled from previously published datasets of modern samples that used the most recent chromatographic methods that separate 5- and 6-methyl isomers. The compiled dataset (n = 3129) consisted of bone (n = 202), groundwater (n = 7), lake water meso/microcosm (n = 36...

Full description

Bibliographic Details
Main Authors: Raberg, Jonathan H, Miller, Gifford H, Geirsdóttir, Áslaug, Sepúlveda, Julio
Format: Dataset
Language:English
Published: PANGAEA 2022
Subjects:
Online Access:https://doi.pangaea.de/10.1594/PANGAEA.940052
https://doi.org/10.1594/PANGAEA.940052
id ftpangaea:oai:pangaea.de:doi:10.1594/PANGAEA.940052
record_format openpolar
institution Open Polar
collection PANGAEA - Data Publisher for Earth & Environmental Science
op_collection_id ftpangaea
language English
topic brGDGT
brGDGTs
spellingShingle brGDGT
brGDGTs
Raberg, Jonathan H
Miller, Gifford H
Geirsdóttir, Áslaug
Sepúlveda, Julio
Global compilation of brGDGT lipid distributions, temperature, and pH across a dozen sample types
topic_facet brGDGT
brGDGTs
description Lipid and environmental data were compiled from previously published datasets of modern samples that used the most recent chromatographic methods that separate 5- and 6-methyl isomers. The compiled dataset (n = 3129) consisted of bone (n = 202), groundwater (n = 7), lake water meso/microcosm (n = 36), lake surface sediment (n = 343), lake water SPM (n = 228, including sediment traps (n = 115) and water filtrates (n = 113)), low DO lake water SPM (n = 138, including sediment traps (n = 29) and water filtrates (n = 109)), authigenic carbonates from a marine methane cold seep (n = 13), marine surface sediment (n = 325, including deep ocean trench sediments (n = 31)), marine SPM (water filtrates, n = 25), peat (n = 473), riverine surface sediments (n = 71) and SPM (water filtrates, n = 85), and soil (n = 1183, including permafrost active layer (n = 17)). Data from other sample media, including hot springs, speleothems, and hydrothermal vents, could not be included as these studies did not separate the 5- and 6-methyl isomers. Fractional abundances (FAs) were calculated according to Raberg et al., (2021). We compiled the brGDGT FAs and, to the best of our ability, associated temperature and pH values from previously published datasets. We selected temperature parameters that were widely supported in the literature when possible. Where a consensus had yet to be reached (e.g., marine sediments), we selected standardizable and accessible parameters (e.g., sea surface temperatures). These selections are not intended to opine on these areas of research, only to allow for broad comparison with other sample types in this study.
format Dataset
author Raberg, Jonathan H
Miller, Gifford H
Geirsdóttir, Áslaug
Sepúlveda, Julio
author_facet Raberg, Jonathan H
Miller, Gifford H
Geirsdóttir, Áslaug
Sepúlveda, Julio
author_sort Raberg, Jonathan H
title Global compilation of brGDGT lipid distributions, temperature, and pH across a dozen sample types
title_short Global compilation of brGDGT lipid distributions, temperature, and pH across a dozen sample types
title_full Global compilation of brGDGT lipid distributions, temperature, and pH across a dozen sample types
title_fullStr Global compilation of brGDGT lipid distributions, temperature, and pH across a dozen sample types
title_full_unstemmed Global compilation of brGDGT lipid distributions, temperature, and pH across a dozen sample types
title_sort global compilation of brgdgt lipid distributions, temperature, and ph across a dozen sample types
publisher PANGAEA
publishDate 2022
url https://doi.pangaea.de/10.1594/PANGAEA.940052
https://doi.org/10.1594/PANGAEA.940052
genre permafrost
genre_facet permafrost
op_relation Raberg, Jonathan H; Miller, Gifford H; Geirsdóttir, Áslaug; Sepúlveda, Julio (2022): Near-universal trends in brGDGT lipid distributions in nature. Science Advances, 8(20), https://doi.org/10.1126/sciadv.abm7625
Cao, Jiantao; Rao, Z; Shi, Fuxi; Jia, Guodong (2020): Ice formation on lake surfaces in winter causes warm-season bias of lacustrine brGDGT temperature estimates. Biogeosciences, 17(9), 2521-2536, https://doi.org/10.5194/bg-17-2521-2020
Ceccopieri, Milena; Carreira, Renato S; Wagener, Angela L R; Hefter, Jens; Mollenhauer, Gesine (2018): On the application of alkenone- and GDGT-based temperature proxies in the south-eastern Brazilian continental margin. Organic Geochemistry, 126, 43-56, https://doi.org/10.1016/j.orggeochem.2018.10.009
Chen, Chihao; Bai, Yan; Fang, Xiaomin; Zhuang, Guangsheng; Khodzhiev, Amriddin; Bai, Xiaojing; Murodov, Azamdzhon (2021): Evaluating the potential of soil bacterial tetraether proxies in westerlies dominating western Pamirs, Tajikistan and implications for paleoenvironmental reconstructions. Chemical Geology, 559, 119908, https://doi.org/10.1016/j.chemgeo.2020.119908
Dang, Xinyue; Ding, Weihua; Yang, Huan; Pancost, Richard D; Naafs, Bernhard David A; Xue, Jiantao; Lin, X; Lu, Jiayi; Xie, Shucheng (2018): Different temperature dependence of the bacterial brGDGT isomers in 35 Chinese lake sediments compared to that in soils. Organic Geochemistry, 119, 72-79, https://doi.org/10.1016/j.orggeochem.2018.02.008
De Jonge, Cindy; Kuramae, E E; Radujković, D; Weedon, J T; Janssens, Ivan A; Peterse, Francien (2021): The influence of soil chemistry on branched tetraether lipids in mid- and high latitude soils: Implications for brGDGT- based paleothermometry. Geochimica et Cosmochimica Acta, 310, 95-112, https://doi.org/10.1016/j.gca.2021.06.037
De Jonge, Cindy; Radujković, Dajana; Sigurdsson, Bjarni D; Weedon, James T; Janssens, Ivan A; Peterse, Francien (2019): Lipid biomarker temperature proxy responds to abrupt shift in the bacterial community composition in geothermally heated soils. Organic Geochemistry, 137, 103897, https://doi.org/10.1016/j.orggeochem.2019.07.006
De Jonge, Cindy; Stadnitskaia, Alina; Fedotov, Andrey; Sinninghe Damsté, Jaap S (2015): Impact of riverine suspended particulate matter on the branched glycerol dialkyl glycerol tetraether composition of lakes: The outflow of the Selenga River in Lake Baikal (Russia). Organic Geochemistry, 83-84, 241-252, https://doi.org/10.1016/j.orggeochem.2015.04.004
De Jonge, Cindy; Stadnitskaia, Alina; Hopmans, Ellen C; Cherkashov, Georgy A; Fedotov, Andrey; Streletskaya, Irina; Vasiliev, Alexander A; Sinninghe Damsté, Jaap S (2015): Drastic changes in the distribution of branched tetraether lipids in suspended matter and sediments from the Yenisei River and Kara Sea (Siberia): Implications for the use of brGDGT-based proxies in coastal marine sediments. Geochimica et Cosmochimica Acta, 165, 200-225, https://doi.org/10.1016/j.gca.2015.05.044
Dearing Crampton-Flood, Emily; Peterse, Francien; Munsterman, Dirk K; Sinninghe Damsté, Jaap S (2018): Using tetraether lipids archived in North Sea Basin sediments to extract North Western European Pliocene continental air temperatures. Earth and Planetary Science Letters, 490, 193-205, https://doi.org/10.1016/j.epsl.2018.03.030
Dearing Crampton-Flood, Emily; Peterse, Francien; Sinninghe Damsté, Jaap S (2019): Production of branched tetraethers in the marine realm: Svalbard fjord sediments revisited. Organic Geochemistry, 138, 103907, https://doi.org/10.1016/j.orggeochem.2019.103907
Dearing Crampton-Flood, Emily; Tierney, Jessica E; Peterse, Francien; Kirkels, Frédérique M S A; Sinninghe Damsté, Jaap S (2020): BayMBT: A Bayesian calibration model for branched glycerol dialkyl glycerol tetraethers in soils and peats. Geochimica et Cosmochimica Acta, 268, 142-159, https://doi.org/10.1016/j.gca.2019.09.043
Dillon, James T; Lash, Sam; Zhao, J; Smith, Kevin P; van Dommelen, Peter; Scherer, Andrew K; Huang, Yongsong (2018): Bacterial tetraether lipids in ancient bones record past climate conditions at the time of disposal. Journal of Archaeological Science, 96, 45-56, https://doi.org/10.1016/j.jas.2018.05.009
Ding, Su; Kohlhepp, Bernd; Trumbore, Susan; Küsel, Kirsten; Totsche, Kai-Uwe; Pohnert, Georg; Gleixner, Gerd; Schwab, Valérie F (2018): In situ production of core and intact bacterial and archaeal tetraether lipids in groundwater. Organic Geochemistry, 126, 1-12, https://doi.org/10.1016/j.orggeochem.2018.10.005
Dugerdil, Lucas; Ménot, Guillemette; Peyron, Odile; Jouffroy-Bapicot, Isabelle; Ansanay-Alex, Salomé; Antheaume, Ingrid; Behling, Hermann; Boldgiv, Bazartseren; Develle, Anne-Lise; Grossi, Vincent; Magail, Jérôme; Makou, Matthew; Robles, Mary; Unkelbach, Julia; Vannière, Boris; Joannin, Sébastien (2021): Late Holocene Mongolian climate and environment reconstructions from brGDGTs, NPPs and pollen transfer functions for Lake Ayrag: Paleoclimate implications for Arid Central Asia. Quaternary Science Reviews, 273, 107235, https://doi.org/10.1016/j.quascirev.2021.107235
Freymond, Chantal V; Peterse, Francien; Fischer, Lorena; Florin, Filip; Giosan, Liviu; Eglinton, Timothy Ian (2017): Branched GDGT signals in fluvial sediments of the Danube River basin: Method comparison and longitudinal evolution. Organic Geochemistry, 103, 88-96, https://doi.org/10.1016/j.orggeochem.2016.11.002
Guo, Jingjing; Glendell, Miriam; Meersmans, Jeroen; Kirkels, Frédérique M S A; Middelburg, Jack J; Peterse, Francien (2020): Assessing branched tetraether lipids as tracers of soil organic carbon transport through the Carminowe Creek catchment (southwest England). Biogeosciences, 17(12), 3183-3201, https://doi.org/10.5194/bg-17-3183-2020
Guo, Jingjing; Ma, Tian; Liu, Nana; Zhang, Xinying; Hu, Huifeng; Ma, Wenhong; Wang, Zhiheng; Feng, Xiaojuan; Peterse, Francien (2022): Soil pH and aridity influence distributions of branched tetraether lipids in grassland soils along an aridity transect. Organic Geochemistry, 164, 104347, https://doi.org/10.1016/j.orggeochem.2021.104347
Hopmans, Ellen C; Weijers, Johan W H; Schefuß, Enno; Herfort, L; Sinninghe Damsté, Jaap S; Schouten, Stefan (2004): A novel proxy for terrestrial organic matter in sediments based on branched and isoprenoid tetraether lipids. Earth and Planetary Science Letters, 224(1-2), 107-116, https://doi.org/10.1016/j.epsl.2004.05.012
Khodzher, Tamara; Domysheva, Valentina Mikhailovna; Sorokovikova, Larisa M; Sakirko, Mariya V; Tomberg, Irina V (2017): Current chemical composition of Lake Baikal water. Inland Waters, 7(3), 250-258, https://doi.org/10.1080/20442041.2017.1329982
Kirkels, Frédérique M S A; Ponton, Camilo; Galy, Valier; West, A Joshua; Feakins, Sarah J; Peterse, Francien (2019): From Andes to Amazon: assessing branched tetraether lipids as tracers for soil Organic Carbon in the Madre de Dios River system. Journal of Geophysical Research: Biogeosciences, https://doi.org/10.1029/2019JG005270
Kusch, Stephanie; Winterfeld, Maria; Mollenhauer, Gesine; Höfle, Silke T; Schirrmeister, Lutz; Schwamborn, Georg; Rethemeyer, Janet (2019): Glycerol dialkyl glycerol tetraethers (GDGTs) in high latitude Siberian permafrost: Diversity, environmental controls, and implications for proxy applications. Organic Geochemistry, 136, 103888, https://doi.org/10.1016/j.orggeochem.2019.06.009
Li, J; Naafs, Bernhard David A; Pancost, Richard D; Yang, Huan; Liu, Deng; Xie, Shucheng (2017): Distribution of branched tetraether lipids in ponds from Inner Mongolia, NE China: Insight into the source of brGDGTs. Organic Geochemistry, 112, 127-136, https://doi.org/10.1016/j.orggeochem.2017.07.005
Li, Y; Zhao, Shijin; Pei, Hongye; Qian, Shi; Zang, Jingjie; Dang, Xinyue; Yang, Huan (2018): Distribution of glycerol dialkyl glycerol tetraethers in surface soils along an altitudinal transect at cold and humid Mountain Changbai: Implications for the reconstruction of paleoaltimetry and paleoclimate. Science China Earth Sciences, 61(7), 925-939, https://doi.org/10.1007/s11430-017-9168-9
Liu, Yongsheng; Xiao, Wenjie; Wu, J; Han, Lulu; Zhang, Hongrui; Xu, Yunping (2021): Source, composition, and distributional pattern of branched tetraethers in sediments of northern Chinese marginal seas. Organic Geochemistry, 157, 104244, https://doi.org/10.1016/j.orggeochem.2021.104244
Martínez-Sosa, Pablo; Tierney, Jessica E (2019): Lacustrine brGDGT response to microcosm and mesocosm incubations. Organic Geochemistry, 127, 12-22, https://doi.org/10.1016/j.orggeochem.2018.10.011
Martínez-Sosa, Pablo; Tierney, Jessica E; Meredith, Laura K (2020): Controlled lacustrine microcosms show a brGDGT response to environmental perturbations. Organic Geochemistry, 145, 104041, https://doi.org/10.1016/j.orggeochem.2020.104041
Martínez-Sosa, Pablo; Tierney, Jessica E; Stefanescu, Ioana C; Crampton-Flood, Emily Dearing; Shuman, Bryan N; Routson, Cody (2021): A global Bayesian temperature calibration for lacustrine brGDGTs. https://doi.org/10.31223/X5PS3P
Miller, Daniel R; Habicht, K; Keisling, Benjamin A; Castañeda, Isla S; Bradley, Raymond S (2018): A 900-year New England temperature reconstruction from in situ seasonally produced branched glycerol dialkyl glycerol tetraethers (brGDGTs). Climate of the Past, 14(11), 1653-1667, https://doi.org/10.5194/cp-14-1653-2018
Naafs, Bernhard David A; Gallego-Sala, Angela V; Inglis, Gordon N; Pancost, Richard D (2017): Refining the global branched glycerol dialkyl glycerol tetraether (brGDGT) soil temperature calibration. Organic Geochemistry, 106, 48-56, https://doi.org/10.1016/j.orggeochem.2017.01.009
Naafs, Bernhard David A; Inglis, Gordon N; Zheng, Y; Amesbury, Matthew J; Biester, Harald; Bindler, Richard; Blewett, Jerome; Burrows, M A; del Castillo Torres, D; Chambers, Frank M; Cohen, A D; Evershed, Richard P; Feakins, Sarah J; Gałka, Mariusz; Gallego-Sala, Angela V; Gandois, Laure; Gray, D M; Hatcher, P G; Honorio Coronado, Euridice N; Hughes, P D M; Huguet, Arnaud; Könönen, M; Laggoun-Défarge, Fatima; Lähteenoja, Outi; Lamentowicz, Mariusz; Marchant, Robert; McClymont, Erin L; Pontevedra-Pombal, Xabier; Ponton, Camilo; Pourmand, Ali; Rizzuti, A M; Rochefort, Line; Schellekens, J; De Vleeschouwer, Francois; Pancost, Richard D (2017): Introducing global peat-specific temperature and pH calibrations based on brGDGT bacterial lipids. Geochimica et Cosmochimica Acta, 208, 285-301, https://doi.org/10.1016/j.gca.2017.01.038
Ning, Dongliang; Zhang, Enlou; Shulmeister, James; Chang, Jie; Sun, Weiwei; Ni, Zhenyu (2019): Holocene mean annual air temperature (MAAT) reconstruction based on branched glycerol dialkyl glycerol tetraethers from Lake Ximenglongtan, southwestern China. Organic Geochemistry, 133, 65-76, https://doi.org/10.1016/j.orggeochem.2019.05.003
Pei, Hongye; Wang, C; Wang, Yongbo; Yang, Huan; Xie, Shucheng (2019): Distribution of microbial lipids at an acid mine drainage site in China: Insights into microbial adaptation to extremely low pH conditions. Organic Geochemistry, 134, 77-91, https://doi.org/10.1016/j.orggeochem.2019.05.008
Pérez-Angel, Lina C; Sepúlveda, Julio; Molnar, P; Montes, Camilo; Rajagopalan, Balaji; Snell, Kathryn; González-Arango, Catalina; Dildar, Nadia (2020): Soil and Air Temperature Calibrations Using Branched GDGTs for the Tropical Andes of Colombia: Toward a Pan‐Tropical Calibration. Geochemistry, Geophysics, Geosystems, 21(8), https://doi.org/10.1029/2020GC008941
Qian, Shi; Yang, Huan; Dong, Caohui; Wang, Yongbo; Wu, J; Pei, Hongye; Dang, Xinyue; Lu, Jiayi; Zhao, Shijin; Xie, Shucheng (2019): Rapid response of fossil tetraether lipids in lake sediments to seasonal environmental variables in a shallow lake in central China: Implications for the use of tetraether-based proxies. Organic Geochemistry, 128, 108-121, https://doi.org/10.1016/j.orggeochem.2018.12.007
Raberg, Jonathan H; Harning, David J; Crump, Sarah E; de Wet, Gregory A; Blumm, Aria; Kopf, Sebastian; Geirsdóttir, Áslaug; Miller, Gifford H; Sepúlveda, Julio (2021): Revised fractional abundances and warm-season temperatures substantially improve brGDGT calibrations in lake sediments. Biogeosciences, 18(12), 3579-3603, https://doi.org/10.5194/bg-18-3579-2021
Russell, James M; Hopmans, Ellen C; Loomis, Shannon E; Liang, Jie; Sinninghe Damsté, Jaap S (2018): Distributions of 5- and 6-methyl branched glycerol dialkyl glycerol tetraethers (brGDGTs) in East African lake sediment: Effects of temperature, pH, and new lacustrine paleotemperature calibrations. Organic Geochemistry, 117, 56-69, https://doi.org/10.1016/j.orggeochem.2017.12.003
Sinninghe Damsté, Jaap S (2016): Spatial heterogeneity of sources of branched tetraethers in shelf systems: The geochemistry of tetraethers in the Berau River delta (Kalimantan, Indonesia). Geochimica et Cosmochimica Acta, 186, 13-31, https://doi.org/10.1016/j.gca.2016.04.033
van Bree, Loes G J; Peterse, Francien; Baxter, Allix J; De Crop, Wannes; van Grinsven, Sigrid; Villanueva, Laura; Verschuren, Dirk; Sinninghe Damsté, Jaap S (2020): Seasonal variability and sources of in situ brGDGT production in a permanently stratified African crater lake. Biogeosciences, 17(21), 5443-5463, https://doi.org/10.5194/bg-17-5443-2020
Véquaud, Pierre; Derenne, Sylvie; Anquetil, Christelle; Collin, Sylvie; Poulenard, Jérôme; Sabatier, Pierre; Huguet, Arnaud (2021): Influence of environmental parameters on the distribution of bacterial lipids in soils from the French Alps: Implications for paleo-reconstructions. Organic Geochemistry, 153, 104194, https://doi.org/10.1016/j.orggeochem.2021.104194
Wang, Huanye; An, Zhisheng; Lu, Hongxuan; Zhao, Z; Liu, Weiguo (2020): Calibrating bacterial tetraether distributions towards in situ soil temperature and application to a loess-paleosol sequence. Quaternary Science Reviews, 231, 106172, https://doi.org/10.1016/j.quascirev.2020.106172
Wang, Huanye; Liu, Weiguo (2021): Soil temperature and brGDGTs along an elevation gradient on the northeastern Tibetan Plateau: A test of soil brGDGTs as a proxy for paleoelevation. Chemical Geology, 566, 120079, https://doi.org/10.1016/j.chemgeo.2021.120079
Wang, M; Zheng, Z; Zong, Yongqiang; Man, Meiling; Tian, L (2019): Distributions of soil branched glycerol dialkyl glycerol tetraethers from different climate regions of China. Scientific Reports, 9(1), https://doi.org/10.1038/s41598-019-39147-9
Wang, Mengyuan; Zong, Yongqiang; Zheng, Zhuo; Man, Meiling; Hu, Jianfang; Tian, Liping (2018): Utility of brGDGTs as temperature and precipitation proxies in subtropical China. Scientific Reports, 8(1), https://doi.org/10.1038/s41598-017-17964-0
Warden, Lisa; Kim, Jung-Hyun; Zell, Claudia; Vis, Geert-Jan; de Stigter, Henko; Bonnin, Jerome; Sinninghe Damsté, Jaap S (2016): Examining the provenance of branched GDGTs in the Tagus River drainage basin and its outflow into the Atlantic Ocean over the Holocene to determine their usefulness for paleoclimate applications. Biogeosciences, 13(20), 5719-5738, https://doi.org/10.5194/bg-13-5719-2016
Weber, Yuki; Sinninghe Damsté, Jaap S; Zopfi, Jakob; De Jonge, Cindy; Gilli, Adrian; Schubert, Carsten J; Lepori, Fabio; Lehmann, Moritz F; Niemann, Helge (2018): Redox-dependent niche differentiation provides evidence for multiple bacterial sources of glycerol tetraether lipids in lakes. Proceedings of the National Academy of Sciences, 115(43), 10926-10931, https://doi.org/10.1073/pnas.1805186115
Woltering, Martijn; Werne, Josef P; Kish, Jason L; Hicks, Randall; Sinninghe Damsté, Jaap S; Schouten, Stefan (2012): Vertical and temporal variability in concentration and distribution of thaumarchaeotal tetraether lipids in Lake Superior and the implications for the application of the TEX86 temperature proxy. Geochimica et Cosmochimica Acta, 87, 136-153, https://doi.org/10.1016/j.gca.2012.03.024
Wu, J; Yang, Huan; Pancost, Richard D; Naafs, Bernhard David A; Qian, Shi; Dang, Xinyue; Sun, H; Pei, Hongye; Wang, Ruicheng; Zhao, Shijin; Xie, Shucheng (2021): Variations in dissolved O2 in a Chinese lake drive changes in microbial communities and impact sedimentary GDGT distributions. Chemical Geology, 579, 120348, https://doi.org/10.1016/j.chemgeo.2021.120348
Xiao, Wenjie; Wang, Yaoyao; Liu, Yongsheng; Zhang, X; Shi, Linlin; Xu, Yunping (2020): Predominance of hexamethylated 6-methyl branched glycerol dialkyl glycerol tetraethers in the Mariana Trench: source and environmental implication. Biogeosciences, 17(7), 2135-2148, https://doi.org/10.5194/bg-17-2135-2020
Xu, Yunping; Jia, Zehua; Xiao, Wenjie; Fang, Jiasong; Wang, Yaoyao; Luo, Min; Wenzhöfer, Frank; Rowden, Ashley A; Glud, Ronnie N (2020): Glycerol dialkyl glycerol tetraethers in surface sediments from three Pacific trenches: Distribution, source and environmental implications. Organic Geochemistry, 147, 104079, https://doi.org/10.1016/j.orggeochem.2020.104079
op_rights CC-BY-4.0: Creative Commons Attribution 4.0 International
Access constraints: unrestricted
info:eu-repo/semantics/openAccess
op_doi https://doi.org/10.1594/PANGAEA.94005210.1126/sciadv.abm762510.5194/bg-17-2521-202010.1016/j.orggeochem.2018.10.00910.1016/j.chemgeo.2020.11990810.1016/j.orggeochem.2018.02.00810.1016/j.gca.2021.06.03710.1016/j.orggeochem.2019.07.00610.1016/j.orggeochem.2
_version_ 1814276458219044864
spelling ftpangaea:oai:pangaea.de:doi:10.1594/PANGAEA.940052 2024-10-29T17:46:58+00:00 Global compilation of brGDGT lipid distributions, temperature, and pH across a dozen sample types Raberg, Jonathan H Miller, Gifford H Geirsdóttir, Áslaug Sepúlveda, Julio 2022 application/vnd.openxmlformats-officedocument.spreadsheetml.sheet, 910.5 kBytes https://doi.pangaea.de/10.1594/PANGAEA.940052 https://doi.org/10.1594/PANGAEA.940052 en eng PANGAEA Raberg, Jonathan H; Miller, Gifford H; Geirsdóttir, Áslaug; Sepúlveda, Julio (2022): Near-universal trends in brGDGT lipid distributions in nature. Science Advances, 8(20), https://doi.org/10.1126/sciadv.abm7625 Cao, Jiantao; Rao, Z; Shi, Fuxi; Jia, Guodong (2020): Ice formation on lake surfaces in winter causes warm-season bias of lacustrine brGDGT temperature estimates. Biogeosciences, 17(9), 2521-2536, https://doi.org/10.5194/bg-17-2521-2020 Ceccopieri, Milena; Carreira, Renato S; Wagener, Angela L R; Hefter, Jens; Mollenhauer, Gesine (2018): On the application of alkenone- and GDGT-based temperature proxies in the south-eastern Brazilian continental margin. Organic Geochemistry, 126, 43-56, https://doi.org/10.1016/j.orggeochem.2018.10.009 Chen, Chihao; Bai, Yan; Fang, Xiaomin; Zhuang, Guangsheng; Khodzhiev, Amriddin; Bai, Xiaojing; Murodov, Azamdzhon (2021): Evaluating the potential of soil bacterial tetraether proxies in westerlies dominating western Pamirs, Tajikistan and implications for paleoenvironmental reconstructions. Chemical Geology, 559, 119908, https://doi.org/10.1016/j.chemgeo.2020.119908 Dang, Xinyue; Ding, Weihua; Yang, Huan; Pancost, Richard D; Naafs, Bernhard David A; Xue, Jiantao; Lin, X; Lu, Jiayi; Xie, Shucheng (2018): Different temperature dependence of the bacterial brGDGT isomers in 35 Chinese lake sediments compared to that in soils. Organic Geochemistry, 119, 72-79, https://doi.org/10.1016/j.orggeochem.2018.02.008 De Jonge, Cindy; Kuramae, E E; Radujković, D; Weedon, J T; Janssens, Ivan A; Peterse, Francien (2021): The influence of soil chemistry on branched tetraether lipids in mid- and high latitude soils: Implications for brGDGT- based paleothermometry. Geochimica et Cosmochimica Acta, 310, 95-112, https://doi.org/10.1016/j.gca.2021.06.037 De Jonge, Cindy; Radujković, Dajana; Sigurdsson, Bjarni D; Weedon, James T; Janssens, Ivan A; Peterse, Francien (2019): Lipid biomarker temperature proxy responds to abrupt shift in the bacterial community composition in geothermally heated soils. Organic Geochemistry, 137, 103897, https://doi.org/10.1016/j.orggeochem.2019.07.006 De Jonge, Cindy; Stadnitskaia, Alina; Fedotov, Andrey; Sinninghe Damsté, Jaap S (2015): Impact of riverine suspended particulate matter on the branched glycerol dialkyl glycerol tetraether composition of lakes: The outflow of the Selenga River in Lake Baikal (Russia). Organic Geochemistry, 83-84, 241-252, https://doi.org/10.1016/j.orggeochem.2015.04.004 De Jonge, Cindy; Stadnitskaia, Alina; Hopmans, Ellen C; Cherkashov, Georgy A; Fedotov, Andrey; Streletskaya, Irina; Vasiliev, Alexander A; Sinninghe Damsté, Jaap S (2015): Drastic changes in the distribution of branched tetraether lipids in suspended matter and sediments from the Yenisei River and Kara Sea (Siberia): Implications for the use of brGDGT-based proxies in coastal marine sediments. Geochimica et Cosmochimica Acta, 165, 200-225, https://doi.org/10.1016/j.gca.2015.05.044 Dearing Crampton-Flood, Emily; Peterse, Francien; Munsterman, Dirk K; Sinninghe Damsté, Jaap S (2018): Using tetraether lipids archived in North Sea Basin sediments to extract North Western European Pliocene continental air temperatures. Earth and Planetary Science Letters, 490, 193-205, https://doi.org/10.1016/j.epsl.2018.03.030 Dearing Crampton-Flood, Emily; Peterse, Francien; Sinninghe Damsté, Jaap S (2019): Production of branched tetraethers in the marine realm: Svalbard fjord sediments revisited. Organic Geochemistry, 138, 103907, https://doi.org/10.1016/j.orggeochem.2019.103907 Dearing Crampton-Flood, Emily; Tierney, Jessica E; Peterse, Francien; Kirkels, Frédérique M S A; Sinninghe Damsté, Jaap S (2020): BayMBT: A Bayesian calibration model for branched glycerol dialkyl glycerol tetraethers in soils and peats. Geochimica et Cosmochimica Acta, 268, 142-159, https://doi.org/10.1016/j.gca.2019.09.043 Dillon, James T; Lash, Sam; Zhao, J; Smith, Kevin P; van Dommelen, Peter; Scherer, Andrew K; Huang, Yongsong (2018): Bacterial tetraether lipids in ancient bones record past climate conditions at the time of disposal. Journal of Archaeological Science, 96, 45-56, https://doi.org/10.1016/j.jas.2018.05.009 Ding, Su; Kohlhepp, Bernd; Trumbore, Susan; Küsel, Kirsten; Totsche, Kai-Uwe; Pohnert, Georg; Gleixner, Gerd; Schwab, Valérie F (2018): In situ production of core and intact bacterial and archaeal tetraether lipids in groundwater. Organic Geochemistry, 126, 1-12, https://doi.org/10.1016/j.orggeochem.2018.10.005 Dugerdil, Lucas; Ménot, Guillemette; Peyron, Odile; Jouffroy-Bapicot, Isabelle; Ansanay-Alex, Salomé; Antheaume, Ingrid; Behling, Hermann; Boldgiv, Bazartseren; Develle, Anne-Lise; Grossi, Vincent; Magail, Jérôme; Makou, Matthew; Robles, Mary; Unkelbach, Julia; Vannière, Boris; Joannin, Sébastien (2021): Late Holocene Mongolian climate and environment reconstructions from brGDGTs, NPPs and pollen transfer functions for Lake Ayrag: Paleoclimate implications for Arid Central Asia. Quaternary Science Reviews, 273, 107235, https://doi.org/10.1016/j.quascirev.2021.107235 Freymond, Chantal V; Peterse, Francien; Fischer, Lorena; Florin, Filip; Giosan, Liviu; Eglinton, Timothy Ian (2017): Branched GDGT signals in fluvial sediments of the Danube River basin: Method comparison and longitudinal evolution. Organic Geochemistry, 103, 88-96, https://doi.org/10.1016/j.orggeochem.2016.11.002 Guo, Jingjing; Glendell, Miriam; Meersmans, Jeroen; Kirkels, Frédérique M S A; Middelburg, Jack J; Peterse, Francien (2020): Assessing branched tetraether lipids as tracers of soil organic carbon transport through the Carminowe Creek catchment (southwest England). Biogeosciences, 17(12), 3183-3201, https://doi.org/10.5194/bg-17-3183-2020 Guo, Jingjing; Ma, Tian; Liu, Nana; Zhang, Xinying; Hu, Huifeng; Ma, Wenhong; Wang, Zhiheng; Feng, Xiaojuan; Peterse, Francien (2022): Soil pH and aridity influence distributions of branched tetraether lipids in grassland soils along an aridity transect. Organic Geochemistry, 164, 104347, https://doi.org/10.1016/j.orggeochem.2021.104347 Hopmans, Ellen C; Weijers, Johan W H; Schefuß, Enno; Herfort, L; Sinninghe Damsté, Jaap S; Schouten, Stefan (2004): A novel proxy for terrestrial organic matter in sediments based on branched and isoprenoid tetraether lipids. Earth and Planetary Science Letters, 224(1-2), 107-116, https://doi.org/10.1016/j.epsl.2004.05.012 Khodzher, Tamara; Domysheva, Valentina Mikhailovna; Sorokovikova, Larisa M; Sakirko, Mariya V; Tomberg, Irina V (2017): Current chemical composition of Lake Baikal water. Inland Waters, 7(3), 250-258, https://doi.org/10.1080/20442041.2017.1329982 Kirkels, Frédérique M S A; Ponton, Camilo; Galy, Valier; West, A Joshua; Feakins, Sarah J; Peterse, Francien (2019): From Andes to Amazon: assessing branched tetraether lipids as tracers for soil Organic Carbon in the Madre de Dios River system. Journal of Geophysical Research: Biogeosciences, https://doi.org/10.1029/2019JG005270 Kusch, Stephanie; Winterfeld, Maria; Mollenhauer, Gesine; Höfle, Silke T; Schirrmeister, Lutz; Schwamborn, Georg; Rethemeyer, Janet (2019): Glycerol dialkyl glycerol tetraethers (GDGTs) in high latitude Siberian permafrost: Diversity, environmental controls, and implications for proxy applications. Organic Geochemistry, 136, 103888, https://doi.org/10.1016/j.orggeochem.2019.06.009 Li, J; Naafs, Bernhard David A; Pancost, Richard D; Yang, Huan; Liu, Deng; Xie, Shucheng (2017): Distribution of branched tetraether lipids in ponds from Inner Mongolia, NE China: Insight into the source of brGDGTs. Organic Geochemistry, 112, 127-136, https://doi.org/10.1016/j.orggeochem.2017.07.005 Li, Y; Zhao, Shijin; Pei, Hongye; Qian, Shi; Zang, Jingjie; Dang, Xinyue; Yang, Huan (2018): Distribution of glycerol dialkyl glycerol tetraethers in surface soils along an altitudinal transect at cold and humid Mountain Changbai: Implications for the reconstruction of paleoaltimetry and paleoclimate. Science China Earth Sciences, 61(7), 925-939, https://doi.org/10.1007/s11430-017-9168-9 Liu, Yongsheng; Xiao, Wenjie; Wu, J; Han, Lulu; Zhang, Hongrui; Xu, Yunping (2021): Source, composition, and distributional pattern of branched tetraethers in sediments of northern Chinese marginal seas. Organic Geochemistry, 157, 104244, https://doi.org/10.1016/j.orggeochem.2021.104244 Martínez-Sosa, Pablo; Tierney, Jessica E (2019): Lacustrine brGDGT response to microcosm and mesocosm incubations. Organic Geochemistry, 127, 12-22, https://doi.org/10.1016/j.orggeochem.2018.10.011 Martínez-Sosa, Pablo; Tierney, Jessica E; Meredith, Laura K (2020): Controlled lacustrine microcosms show a brGDGT response to environmental perturbations. Organic Geochemistry, 145, 104041, https://doi.org/10.1016/j.orggeochem.2020.104041 Martínez-Sosa, Pablo; Tierney, Jessica E; Stefanescu, Ioana C; Crampton-Flood, Emily Dearing; Shuman, Bryan N; Routson, Cody (2021): A global Bayesian temperature calibration for lacustrine brGDGTs. https://doi.org/10.31223/X5PS3P Miller, Daniel R; Habicht, K; Keisling, Benjamin A; Castañeda, Isla S; Bradley, Raymond S (2018): A 900-year New England temperature reconstruction from in situ seasonally produced branched glycerol dialkyl glycerol tetraethers (brGDGTs). Climate of the Past, 14(11), 1653-1667, https://doi.org/10.5194/cp-14-1653-2018 Naafs, Bernhard David A; Gallego-Sala, Angela V; Inglis, Gordon N; Pancost, Richard D (2017): Refining the global branched glycerol dialkyl glycerol tetraether (brGDGT) soil temperature calibration. Organic Geochemistry, 106, 48-56, https://doi.org/10.1016/j.orggeochem.2017.01.009 Naafs, Bernhard David A; Inglis, Gordon N; Zheng, Y; Amesbury, Matthew J; Biester, Harald; Bindler, Richard; Blewett, Jerome; Burrows, M A; del Castillo Torres, D; Chambers, Frank M; Cohen, A D; Evershed, Richard P; Feakins, Sarah J; Gałka, Mariusz; Gallego-Sala, Angela V; Gandois, Laure; Gray, D M; Hatcher, P G; Honorio Coronado, Euridice N; Hughes, P D M; Huguet, Arnaud; Könönen, M; Laggoun-Défarge, Fatima; Lähteenoja, Outi; Lamentowicz, Mariusz; Marchant, Robert; McClymont, Erin L; Pontevedra-Pombal, Xabier; Ponton, Camilo; Pourmand, Ali; Rizzuti, A M; Rochefort, Line; Schellekens, J; De Vleeschouwer, Francois; Pancost, Richard D (2017): Introducing global peat-specific temperature and pH calibrations based on brGDGT bacterial lipids. Geochimica et Cosmochimica Acta, 208, 285-301, https://doi.org/10.1016/j.gca.2017.01.038 Ning, Dongliang; Zhang, Enlou; Shulmeister, James; Chang, Jie; Sun, Weiwei; Ni, Zhenyu (2019): Holocene mean annual air temperature (MAAT) reconstruction based on branched glycerol dialkyl glycerol tetraethers from Lake Ximenglongtan, southwestern China. Organic Geochemistry, 133, 65-76, https://doi.org/10.1016/j.orggeochem.2019.05.003 Pei, Hongye; Wang, C; Wang, Yongbo; Yang, Huan; Xie, Shucheng (2019): Distribution of microbial lipids at an acid mine drainage site in China: Insights into microbial adaptation to extremely low pH conditions. Organic Geochemistry, 134, 77-91, https://doi.org/10.1016/j.orggeochem.2019.05.008 Pérez-Angel, Lina C; Sepúlveda, Julio; Molnar, P; Montes, Camilo; Rajagopalan, Balaji; Snell, Kathryn; González-Arango, Catalina; Dildar, Nadia (2020): Soil and Air Temperature Calibrations Using Branched GDGTs for the Tropical Andes of Colombia: Toward a Pan‐Tropical Calibration. Geochemistry, Geophysics, Geosystems, 21(8), https://doi.org/10.1029/2020GC008941 Qian, Shi; Yang, Huan; Dong, Caohui; Wang, Yongbo; Wu, J; Pei, Hongye; Dang, Xinyue; Lu, Jiayi; Zhao, Shijin; Xie, Shucheng (2019): Rapid response of fossil tetraether lipids in lake sediments to seasonal environmental variables in a shallow lake in central China: Implications for the use of tetraether-based proxies. Organic Geochemistry, 128, 108-121, https://doi.org/10.1016/j.orggeochem.2018.12.007 Raberg, Jonathan H; Harning, David J; Crump, Sarah E; de Wet, Gregory A; Blumm, Aria; Kopf, Sebastian; Geirsdóttir, Áslaug; Miller, Gifford H; Sepúlveda, Julio (2021): Revised fractional abundances and warm-season temperatures substantially improve brGDGT calibrations in lake sediments. Biogeosciences, 18(12), 3579-3603, https://doi.org/10.5194/bg-18-3579-2021 Russell, James M; Hopmans, Ellen C; Loomis, Shannon E; Liang, Jie; Sinninghe Damsté, Jaap S (2018): Distributions of 5- and 6-methyl branched glycerol dialkyl glycerol tetraethers (brGDGTs) in East African lake sediment: Effects of temperature, pH, and new lacustrine paleotemperature calibrations. Organic Geochemistry, 117, 56-69, https://doi.org/10.1016/j.orggeochem.2017.12.003 Sinninghe Damsté, Jaap S (2016): Spatial heterogeneity of sources of branched tetraethers in shelf systems: The geochemistry of tetraethers in the Berau River delta (Kalimantan, Indonesia). Geochimica et Cosmochimica Acta, 186, 13-31, https://doi.org/10.1016/j.gca.2016.04.033 van Bree, Loes G J; Peterse, Francien; Baxter, Allix J; De Crop, Wannes; van Grinsven, Sigrid; Villanueva, Laura; Verschuren, Dirk; Sinninghe Damsté, Jaap S (2020): Seasonal variability and sources of in situ brGDGT production in a permanently stratified African crater lake. Biogeosciences, 17(21), 5443-5463, https://doi.org/10.5194/bg-17-5443-2020 Véquaud, Pierre; Derenne, Sylvie; Anquetil, Christelle; Collin, Sylvie; Poulenard, Jérôme; Sabatier, Pierre; Huguet, Arnaud (2021): Influence of environmental parameters on the distribution of bacterial lipids in soils from the French Alps: Implications for paleo-reconstructions. Organic Geochemistry, 153, 104194, https://doi.org/10.1016/j.orggeochem.2021.104194 Wang, Huanye; An, Zhisheng; Lu, Hongxuan; Zhao, Z; Liu, Weiguo (2020): Calibrating bacterial tetraether distributions towards in situ soil temperature and application to a loess-paleosol sequence. Quaternary Science Reviews, 231, 106172, https://doi.org/10.1016/j.quascirev.2020.106172 Wang, Huanye; Liu, Weiguo (2021): Soil temperature and brGDGTs along an elevation gradient on the northeastern Tibetan Plateau: A test of soil brGDGTs as a proxy for paleoelevation. Chemical Geology, 566, 120079, https://doi.org/10.1016/j.chemgeo.2021.120079 Wang, M; Zheng, Z; Zong, Yongqiang; Man, Meiling; Tian, L (2019): Distributions of soil branched glycerol dialkyl glycerol tetraethers from different climate regions of China. Scientific Reports, 9(1), https://doi.org/10.1038/s41598-019-39147-9 Wang, Mengyuan; Zong, Yongqiang; Zheng, Zhuo; Man, Meiling; Hu, Jianfang; Tian, Liping (2018): Utility of brGDGTs as temperature and precipitation proxies in subtropical China. Scientific Reports, 8(1), https://doi.org/10.1038/s41598-017-17964-0 Warden, Lisa; Kim, Jung-Hyun; Zell, Claudia; Vis, Geert-Jan; de Stigter, Henko; Bonnin, Jerome; Sinninghe Damsté, Jaap S (2016): Examining the provenance of branched GDGTs in the Tagus River drainage basin and its outflow into the Atlantic Ocean over the Holocene to determine their usefulness for paleoclimate applications. Biogeosciences, 13(20), 5719-5738, https://doi.org/10.5194/bg-13-5719-2016 Weber, Yuki; Sinninghe Damsté, Jaap S; Zopfi, Jakob; De Jonge, Cindy; Gilli, Adrian; Schubert, Carsten J; Lepori, Fabio; Lehmann, Moritz F; Niemann, Helge (2018): Redox-dependent niche differentiation provides evidence for multiple bacterial sources of glycerol tetraether lipids in lakes. Proceedings of the National Academy of Sciences, 115(43), 10926-10931, https://doi.org/10.1073/pnas.1805186115 Woltering, Martijn; Werne, Josef P; Kish, Jason L; Hicks, Randall; Sinninghe Damsté, Jaap S; Schouten, Stefan (2012): Vertical and temporal variability in concentration and distribution of thaumarchaeotal tetraether lipids in Lake Superior and the implications for the application of the TEX86 temperature proxy. Geochimica et Cosmochimica Acta, 87, 136-153, https://doi.org/10.1016/j.gca.2012.03.024 Wu, J; Yang, Huan; Pancost, Richard D; Naafs, Bernhard David A; Qian, Shi; Dang, Xinyue; Sun, H; Pei, Hongye; Wang, Ruicheng; Zhao, Shijin; Xie, Shucheng (2021): Variations in dissolved O2 in a Chinese lake drive changes in microbial communities and impact sedimentary GDGT distributions. Chemical Geology, 579, 120348, https://doi.org/10.1016/j.chemgeo.2021.120348 Xiao, Wenjie; Wang, Yaoyao; Liu, Yongsheng; Zhang, X; Shi, Linlin; Xu, Yunping (2020): Predominance of hexamethylated 6-methyl branched glycerol dialkyl glycerol tetraethers in the Mariana Trench: source and environmental implication. Biogeosciences, 17(7), 2135-2148, https://doi.org/10.5194/bg-17-2135-2020 Xu, Yunping; Jia, Zehua; Xiao, Wenjie; Fang, Jiasong; Wang, Yaoyao; Luo, Min; Wenzhöfer, Frank; Rowden, Ashley A; Glud, Ronnie N (2020): Glycerol dialkyl glycerol tetraethers in surface sediments from three Pacific trenches: Distribution, source and environmental implications. Organic Geochemistry, 147, 104079, https://doi.org/10.1016/j.orggeochem.2020.104079 CC-BY-4.0: Creative Commons Attribution 4.0 International Access constraints: unrestricted info:eu-repo/semantics/openAccess brGDGT brGDGTs dataset 2022 ftpangaea https://doi.org/10.1594/PANGAEA.94005210.1126/sciadv.abm762510.5194/bg-17-2521-202010.1016/j.orggeochem.2018.10.00910.1016/j.chemgeo.2020.11990810.1016/j.orggeochem.2018.02.00810.1016/j.gca.2021.06.03710.1016/j.orggeochem.2019.07.00610.1016/j.orggeochem.2 2024-10-02T00:42:44Z Lipid and environmental data were compiled from previously published datasets of modern samples that used the most recent chromatographic methods that separate 5- and 6-methyl isomers. The compiled dataset (n = 3129) consisted of bone (n = 202), groundwater (n = 7), lake water meso/microcosm (n = 36), lake surface sediment (n = 343), lake water SPM (n = 228, including sediment traps (n = 115) and water filtrates (n = 113)), low DO lake water SPM (n = 138, including sediment traps (n = 29) and water filtrates (n = 109)), authigenic carbonates from a marine methane cold seep (n = 13), marine surface sediment (n = 325, including deep ocean trench sediments (n = 31)), marine SPM (water filtrates, n = 25), peat (n = 473), riverine surface sediments (n = 71) and SPM (water filtrates, n = 85), and soil (n = 1183, including permafrost active layer (n = 17)). Data from other sample media, including hot springs, speleothems, and hydrothermal vents, could not be included as these studies did not separate the 5- and 6-methyl isomers. Fractional abundances (FAs) were calculated according to Raberg et al., (2021). We compiled the brGDGT FAs and, to the best of our ability, associated temperature and pH values from previously published datasets. We selected temperature parameters that were widely supported in the literature when possible. Where a consensus had yet to be reached (e.g., marine sediments), we selected standardizable and accessible parameters (e.g., sea surface temperatures). These selections are not intended to opine on these areas of research, only to allow for broad comparison with other sample types in this study. Dataset permafrost PANGAEA - Data Publisher for Earth & Environmental Science