NCL20: A global GNSS velocity field for estimating tectonic plate motion and testing GIA models

We created a 3D GNSS surface velocity field to estimate tectonic plate motion and test the effect of a set of 1D and 3D Glacial Isostatic Adjustment (GIA) models on tectonic plate motion estimates. The main motivation for creating a bespoke 3D velocity field is to include a larger number of GNSS sit...

Full description

Bibliographic Details
Main Authors: Vardić, Katarina, Clarke, Peter J, Whitehouse, Pippa L
Format: Dataset
Language:English
Published: PANGAEA 2021
Subjects:
Online Access:https://doi.pangaea.de/10.1594/PANGAEA.935079
https://doi.org/10.1594/PANGAEA.935079
id ftpangaea:oai:pangaea.de:doi:10.1594/PANGAEA.935079
record_format openpolar
institution Open Polar
collection PANGAEA - Data Publisher for Earth & Environmental Science
op_collection_id ftpangaea
language English
topic 1LSU_GNSS
1NSU_GNSS
1ULM_GNSS
AB04_GNSS
AB08_GNSS
AB12_GNSS
AC58_GNSS
ACOR_GNSS
ACP1_GNSS
ACP6_GNSS
ACSO_GNSS
ACUM_GNSS
ADE1_GNSS
ADIS_GNSS
ADRI_GNSS
AJAC_GNSS
AL30_GNSS
AL40_GNSS
AL50_GNSS
AL60_GNSS
AL70_GNSS
AL90_GNSS
ALCI_GNSS
ALES_GNSS
ALGO_GNSS
ALIC_GNSS
ALRT_GNSS
AMC2_GNSS
ANDO_GNSS
ANG1_GNSS
ANP5_GNSS
ANTO_GNSS
AOML_GNSS
AOPR_GNSS
ARBT_GNSS
ARCM_GNSS
ARFY_GNSS
ARGI_GNSS
ARHP_GNSS
ARHR_GNSS
ARJM_GNSS
ARP3_GNSS
ARPG_GNSS
ARTU_GNSS
ASC1_GNSS
ASCG_GNSS
ASHV_GNSS
ASUB_GNSS
AUCK_GNSS
AUDR_GNSS
spellingShingle 1LSU_GNSS
1NSU_GNSS
1ULM_GNSS
AB04_GNSS
AB08_GNSS
AB12_GNSS
AC58_GNSS
ACOR_GNSS
ACP1_GNSS
ACP6_GNSS
ACSO_GNSS
ACUM_GNSS
ADE1_GNSS
ADIS_GNSS
ADRI_GNSS
AJAC_GNSS
AL30_GNSS
AL40_GNSS
AL50_GNSS
AL60_GNSS
AL70_GNSS
AL90_GNSS
ALCI_GNSS
ALES_GNSS
ALGO_GNSS
ALIC_GNSS
ALRT_GNSS
AMC2_GNSS
ANDO_GNSS
ANG1_GNSS
ANP5_GNSS
ANTO_GNSS
AOML_GNSS
AOPR_GNSS
ARBT_GNSS
ARCM_GNSS
ARFY_GNSS
ARGI_GNSS
ARHP_GNSS
ARHR_GNSS
ARJM_GNSS
ARP3_GNSS
ARPG_GNSS
ARTU_GNSS
ASC1_GNSS
ASCG_GNSS
ASHV_GNSS
ASUB_GNSS
AUCK_GNSS
AUDR_GNSS
Vardić, Katarina
Clarke, Peter J
Whitehouse, Pippa L
NCL20: A global GNSS velocity field for estimating tectonic plate motion and testing GIA models
topic_facet 1LSU_GNSS
1NSU_GNSS
1ULM_GNSS
AB04_GNSS
AB08_GNSS
AB12_GNSS
AC58_GNSS
ACOR_GNSS
ACP1_GNSS
ACP6_GNSS
ACSO_GNSS
ACUM_GNSS
ADE1_GNSS
ADIS_GNSS
ADRI_GNSS
AJAC_GNSS
AL30_GNSS
AL40_GNSS
AL50_GNSS
AL60_GNSS
AL70_GNSS
AL90_GNSS
ALCI_GNSS
ALES_GNSS
ALGO_GNSS
ALIC_GNSS
ALRT_GNSS
AMC2_GNSS
ANDO_GNSS
ANG1_GNSS
ANP5_GNSS
ANTO_GNSS
AOML_GNSS
AOPR_GNSS
ARBT_GNSS
ARCM_GNSS
ARFY_GNSS
ARGI_GNSS
ARHP_GNSS
ARHR_GNSS
ARJM_GNSS
ARP3_GNSS
ARPG_GNSS
ARTU_GNSS
ASC1_GNSS
ASCG_GNSS
ASHV_GNSS
ASUB_GNSS
AUCK_GNSS
AUDR_GNSS
description We created a 3D GNSS surface velocity field to estimate tectonic plate motion and test the effect of a set of 1D and 3D Glacial Isostatic Adjustment (GIA) models on tectonic plate motion estimates. The main motivation for creating a bespoke 3D velocity field is to include a larger number of GNSS sites in the GIA-affected areas of investigation, namely North America, Europe, and Antarctica. We created the GNSS surface velocity field using the daily network solutions submitted to the International GNSS Service (IGS) “repro2” data processing campaign, and other similarly processed GNSS solutions. We combined multiple epoch solutions into unique global epoch solutions of high stability. The GNSS solutions we used were processed with the latest available methods and models at the time: all the global and regional solutions adhere to IGS repro2 standards. Every network solution gives standard deviations of site position coordinates and the correlations between the network sites. We deconstrained and combined the global networks and aligned them to the most recent ITRF2014 reference frame on a daily level. Additionally, several regional network solutions were deconstrained and aligned to the unique global solutions. The process was performed using the Tanya reference frame combination software (Davies & Blewitt, 1997; doi:10.1029/2000JB900004) which we updated to facilitate changes in network combination method and ITRF realisation. This resulted in 57% reduction of the WRMS of the alignment post-fit residuals compared to the alignment to the previous ITRF2008 reference frame for an overlapping period. We estimated linear velocities from the time series of GNSS coordinates using the MIDAS trend estimator (Blewitt et al., 2016; doi:10.1002/2015JB012552). The sites selected through multiple steps of quality control constitute a final GNSS surface velocity field which we denote NCL20. This velocity field has horizontal uncertainties mostly within 0.5 mm/yr, and vertical uncertainties mostly within 1 mm/yr, which make ...
format Dataset
author Vardić, Katarina
Clarke, Peter J
Whitehouse, Pippa L
author_facet Vardić, Katarina
Clarke, Peter J
Whitehouse, Pippa L
author_sort Vardić, Katarina
title NCL20: A global GNSS velocity field for estimating tectonic plate motion and testing GIA models
title_short NCL20: A global GNSS velocity field for estimating tectonic plate motion and testing GIA models
title_full NCL20: A global GNSS velocity field for estimating tectonic plate motion and testing GIA models
title_fullStr NCL20: A global GNSS velocity field for estimating tectonic plate motion and testing GIA models
title_full_unstemmed NCL20: A global GNSS velocity field for estimating tectonic plate motion and testing GIA models
title_sort ncl20: a global gnss velocity field for estimating tectonic plate motion and testing gia models
publisher PANGAEA
publishDate 2021
url https://doi.pangaea.de/10.1594/PANGAEA.935079
https://doi.org/10.1594/PANGAEA.935079
op_coverage MEDIAN LATITUDE: 28.681812 * MEDIAN LONGITUDE: -39.359232 * SOUTH-BOUND LATITUDE: -87.415655 * WEST-BOUND LONGITUDE: -176.617117 * NORTH-BOUND LATITUDE: 82.494294 * EAST-BOUND LONGITUDE: 179.196558 * MINIMUM ELEVATION: 111.3 m * MAXIMUM ELEVATION: 132.7 m
long_lat ENVELOPE(-176.617117,179.196558,82.494294,-87.415655)
genre Antarc*
Antarctica
genre_facet Antarc*
Antarctica
op_relation Vardić, Katarina; Clarke, Peter J; Whitehouse, Pippa L (2022): A GNSS velocity field for crustal deformation studies: The influence of glacial isostatic adjustment on plate motion models. Geophysical Journal International, 231(1), 426-458, https://doi.org/10.1093/gji/ggac047
EUREF Permanent GNSS Network (URI: http://www.epncb.oma.be/_productsservices/analysiscentres/combsolframe.php)
Kierulf, Halfdan Pascal; Steffen, Holger; Barletta, Valentina R; Lidberg, Martin; Johansson, Jan; Kristiansen, Oddgeir; Tarasov, Lev (2021): A GNSS velocity field for geophysical applications in Fennoscandia. Journal of Geodynamics, 146, 101845, https://doi.org/10.1016/j.jog.2021.101845
Murray, Mark H (2016): GAGE Processing GPS Plate Boundary Observatory Expanded Analysis Product: Final SINEX; Loosely-constrained Position Solution Produced by New Mexico Institute of Technology (Analysis Center) [dataset]. UNAVCO, Inc., https://doi.org/10.7283/P2BC7K
Rebischung, Paul; Altamimi, Zuheir; Ray, Jim; Garayt, Bruno (2016): The IGS contribution to ITRF2014. Journal of Geodesy, 90(7), 611-630, https://doi.org/10.1007/s00190-016-0897-6
Merged sites (NCL20: A global GNSS velocity field for estimating tectonic plate motion and testing GIA models) (URI: https://download.pangaea.de/reference/109753/attachments/Merged_sites.pdf)
https://doi.pangaea.de/10.1594/PANGAEA.935079
https://doi.org/10.1594/PANGAEA.935079
op_rights CC-BY-4.0: Creative Commons Attribution 4.0 International
Access constraints: unrestricted
info:eu-repo/semantics/openAccess
op_doi https://doi.org/10.1594/PANGAEA.93507910.1093/gji/ggac04710.1016/j.jog.2021.10184510.7283/P2BC7K10.1007/s00190-016-0897-6
_version_ 1810488139801690112
spelling ftpangaea:oai:pangaea.de:doi:10.1594/PANGAEA.935079 2024-09-15T17:41:51+00:00 NCL20: A global GNSS velocity field for estimating tectonic plate motion and testing GIA models Vardić, Katarina Clarke, Peter J Whitehouse, Pippa L MEDIAN LATITUDE: 28.681812 * MEDIAN LONGITUDE: -39.359232 * SOUTH-BOUND LATITUDE: -87.415655 * WEST-BOUND LONGITUDE: -176.617117 * NORTH-BOUND LATITUDE: 82.494294 * EAST-BOUND LONGITUDE: 179.196558 * MINIMUM ELEVATION: 111.3 m * MAXIMUM ELEVATION: 132.7 m 2021 text/tab-separated-values, 6755 data points https://doi.pangaea.de/10.1594/PANGAEA.935079 https://doi.org/10.1594/PANGAEA.935079 en eng PANGAEA Vardić, Katarina; Clarke, Peter J; Whitehouse, Pippa L (2022): A GNSS velocity field for crustal deformation studies: The influence of glacial isostatic adjustment on plate motion models. Geophysical Journal International, 231(1), 426-458, https://doi.org/10.1093/gji/ggac047 EUREF Permanent GNSS Network (URI: http://www.epncb.oma.be/_productsservices/analysiscentres/combsolframe.php) Kierulf, Halfdan Pascal; Steffen, Holger; Barletta, Valentina R; Lidberg, Martin; Johansson, Jan; Kristiansen, Oddgeir; Tarasov, Lev (2021): A GNSS velocity field for geophysical applications in Fennoscandia. Journal of Geodynamics, 146, 101845, https://doi.org/10.1016/j.jog.2021.101845 Murray, Mark H (2016): GAGE Processing GPS Plate Boundary Observatory Expanded Analysis Product: Final SINEX; Loosely-constrained Position Solution Produced by New Mexico Institute of Technology (Analysis Center) [dataset]. UNAVCO, Inc., https://doi.org/10.7283/P2BC7K Rebischung, Paul; Altamimi, Zuheir; Ray, Jim; Garayt, Bruno (2016): The IGS contribution to ITRF2014. Journal of Geodesy, 90(7), 611-630, https://doi.org/10.1007/s00190-016-0897-6 Merged sites (NCL20: A global GNSS velocity field for estimating tectonic plate motion and testing GIA models) (URI: https://download.pangaea.de/reference/109753/attachments/Merged_sites.pdf) https://doi.pangaea.de/10.1594/PANGAEA.935079 https://doi.org/10.1594/PANGAEA.935079 CC-BY-4.0: Creative Commons Attribution 4.0 International Access constraints: unrestricted info:eu-repo/semantics/openAccess 1LSU_GNSS 1NSU_GNSS 1ULM_GNSS AB04_GNSS AB08_GNSS AB12_GNSS AC58_GNSS ACOR_GNSS ACP1_GNSS ACP6_GNSS ACSO_GNSS ACUM_GNSS ADE1_GNSS ADIS_GNSS ADRI_GNSS AJAC_GNSS AL30_GNSS AL40_GNSS AL50_GNSS AL60_GNSS AL70_GNSS AL90_GNSS ALCI_GNSS ALES_GNSS ALGO_GNSS ALIC_GNSS ALRT_GNSS AMC2_GNSS ANDO_GNSS ANG1_GNSS ANP5_GNSS ANTO_GNSS AOML_GNSS AOPR_GNSS ARBT_GNSS ARCM_GNSS ARFY_GNSS ARGI_GNSS ARHP_GNSS ARHR_GNSS ARJM_GNSS ARP3_GNSS ARPG_GNSS ARTU_GNSS ASC1_GNSS ASCG_GNSS ASHV_GNSS ASUB_GNSS AUCK_GNSS AUDR_GNSS dataset 2021 ftpangaea https://doi.org/10.1594/PANGAEA.93507910.1093/gji/ggac04710.1016/j.jog.2021.10184510.7283/P2BC7K10.1007/s00190-016-0897-6 2024-07-24T02:31:34Z We created a 3D GNSS surface velocity field to estimate tectonic plate motion and test the effect of a set of 1D and 3D Glacial Isostatic Adjustment (GIA) models on tectonic plate motion estimates. The main motivation for creating a bespoke 3D velocity field is to include a larger number of GNSS sites in the GIA-affected areas of investigation, namely North America, Europe, and Antarctica. We created the GNSS surface velocity field using the daily network solutions submitted to the International GNSS Service (IGS) “repro2” data processing campaign, and other similarly processed GNSS solutions. We combined multiple epoch solutions into unique global epoch solutions of high stability. The GNSS solutions we used were processed with the latest available methods and models at the time: all the global and regional solutions adhere to IGS repro2 standards. Every network solution gives standard deviations of site position coordinates and the correlations between the network sites. We deconstrained and combined the global networks and aligned them to the most recent ITRF2014 reference frame on a daily level. Additionally, several regional network solutions were deconstrained and aligned to the unique global solutions. The process was performed using the Tanya reference frame combination software (Davies & Blewitt, 1997; doi:10.1029/2000JB900004) which we updated to facilitate changes in network combination method and ITRF realisation. This resulted in 57% reduction of the WRMS of the alignment post-fit residuals compared to the alignment to the previous ITRF2008 reference frame for an overlapping period. We estimated linear velocities from the time series of GNSS coordinates using the MIDAS trend estimator (Blewitt et al., 2016; doi:10.1002/2015JB012552). The sites selected through multiple steps of quality control constitute a final GNSS surface velocity field which we denote NCL20. This velocity field has horizontal uncertainties mostly within 0.5 mm/yr, and vertical uncertainties mostly within 1 mm/yr, which make ... Dataset Antarc* Antarctica PANGAEA - Data Publisher for Earth & Environmental Science ENVELOPE(-176.617117,179.196558,82.494294,-87.415655)