Airborne sea ice parameters during aircraft flight P6_217_ICEBIRD_2019_1904081301, Version 1
Airborne multi-instrument measurements of sea ice were made in April 2019 during the winter campaign of the AWI IceBird campaign series. The data consist of five surveys spanning sea-ice covered areas in the Lincoln Sea, Central Arctic Ocean, as well as the Beaufort Sea. For each flight, the geoloca...
Main Authors: | , , , , |
---|---|
Format: | Dataset |
Language: | English |
Published: |
PANGAEA
2021
|
Subjects: | |
Online Access: | https://doi.pangaea.de/10.1594/PANGAEA.933910 https://doi.org/10.1594/PANGAEA.933910 |
Summary: | Airborne multi-instrument measurements of sea ice were made in April 2019 during the winter campaign of the AWI IceBird campaign series. The data consist of five surveys spanning sea-ice covered areas in the Lincoln Sea, Central Arctic Ocean, as well as the Beaufort Sea. For each flight, the geolocated total (ice+snow) thickness data from an airborne electromagnetic (EM) induction sensor are provided with a point spacing of approximately 5-6 meters. Larger gaps in the trajectories arise from high-altitude calibrations of the EM sensor. The data are combined with collocated and simultaneous snow depth measurements from an airborne frequency-modulated continuous-wave ultrawideband radar, snow freeboard measurements from an airborne near-infrared laser scanner, and surface temperature measurements from an airborne infrared radiation pyrometer. Each value represents the average within the approximately 40 m diameter footprint of the EM sensor, thus representing a smoothed representation. These values are then used to derive further sea ice parameters such as sea ice bulk density. The trajectory data contain the full and unfiltered data record with quality flags. |
---|