LM17.3 - a global vertical land motion model of glacial isostatic adjustment

We provide a global 0.5-degree grid of vertical land motion (in mm/a) of the LM17.3 glacial isostatic adjustment (GIA) model. The radially varying earth model part is profile VM5a (Peltier et al. 2015). The ice load is different to any other GIA model and combines regional ice loads without taking c...

Full description

Bibliographic Details
Main Authors: Steffen, Holger, Li, Tanghua, Wu, Patrick, Gowan, Evan J, Ivins, Erik, Lecavalier, Benoit, Tarasov, Lev, Whitehouse, Pippa L
Format: Dataset
Language:English
Published: PANGAEA 2021
Subjects:
Online Access:https://doi.pangaea.de/10.1594/PANGAEA.932462
https://doi.org/10.1594/PANGAEA.932462
Description
Summary:We provide a global 0.5-degree grid of vertical land motion (in mm/a) of the LM17.3 glacial isostatic adjustment (GIA) model. The radially varying earth model part is profile VM5a (Peltier et al. 2015). The ice load is different to any other GIA model and combines regional ice loads without taking care of balancing the global sea-level equivalent of all ice sheets and glaciers with that expected from paleo-sea-level indicators. The regional models are: * GLAC-1D for North America (Tarasov et al. 2012), * HUY3 for Greenland (Lecavalier et al. 2014), * GLAC #71340 for Fennoscandia/Barents Sea (Tarasov et al., 2014), * ANU-ICE for Iceland, High Mountain Areas, Siberian Mountains and Tibet (Lambeck et al. 2014), * IJ04_Patagonia for Patagonia (updated from Ivins & James 2004), * ICE-6G_C for New Zealand (Argus et al. 2014, Peltier et al. 2015), * GLAC-1D for Antarctica (Briggs et al. 2014). Additional models (W12, Whitehouse et al. 2012, and IJ05_R2, Ivins et al. 2013, for Antarctica; ANU-ICE, Lambeck et al. 2017, and NAIce, Gowan et al. 2016, for North America) were tested in the development of the model but not used in the end. Little ice age is not included nor any ice mass change during the last 100 years. The eustatic sea-level equivalent at last glacial maximum amounts to 113.8 m for all ice sheets and glaciers together. Because we use an ice model that has not been tuned to fit global constraints, it may highlight areas which cannot match commonly used GIA observations. However, we note that the earth model used in our calculations is different to the earth model used in the development of some regional ice models, e.g. HUY3, ANU-ICE, IJ04_Patagonia (see respective references), thus some differences can be related to this. The LM17.3 model was introduced in Jäggi et al. (2019), and its DDK5-filtered geoid and water heights can be found in the EGSIEM plotter (http://plot.egsiem.eu/index.php?p=timeseries). The GIA model uses material compressibility and includes time-dependent coastlines and rotational ...