id ftpangaea:oai:pangaea.de:doi:10.1594/PANGAEA.923833
record_format openpolar
spelling ftpangaea:oai:pangaea.de:doi:10.1594/PANGAEA.923833 2024-09-15T18:27:50+00:00 Seawater carbonate chemistry and critical thermal maximum of coral reef fishes Ern, Rasmus Johansen, Jacob L Rummer, Jodie L Esbaugh, Andrew J LATITUDE: -14.666670 * LONGITUDE: 145.466670 2017 text/tab-separated-values, 4237 data points https://doi.pangaea.de/10.1594/PANGAEA.923833 https://doi.org/10.1594/PANGAEA.923833 en eng PANGAEA Ern, Rasmus; Johansen, Jacob L; Rummer, Jodie L; Esbaugh, Andrew J (2017): Effects of hypoxia and ocean acidification on the upper thermal niche boundaries of coral reef fishes. Biology Letters, 13(7), 20170135, https://doi.org/10.1098/rsbl.2017.0135 Gattuso, Jean-Pierre; Epitalon, Jean-Marie; Lavigne, Héloïse; Orr, James C; Gentili, Bernard; Hagens, Mathilde; Hofmann, Andreas; Mueller, Jens-Daniel; Proye, Aurélien; Rae, James; Soetaert, Karline (2019): seacarb: seawater carbonate chemistry with R. R package version 3.2.12. https://CRAN.R-project.org/package=seacarb https://doi.pangaea.de/10.1594/PANGAEA.923833 https://doi.org/10.1594/PANGAEA.923833 CC-BY-4.0: Creative Commons Attribution 4.0 International Access constraints: unrestricted info:eu-repo/semantics/openAccess Acanthochromis polyacanthus Aerobic scope of oxygen standard error Alkalinity total Animalia Aragonite saturation state Behaviour Bicarbonate ion Calcite saturation state Calculated using CO2SYS Calculated using seacarb after Nisumaa et al. (2010) Carbon inorganic dissolved Carbonate ion Carbonate system computation flag Carbon dioxide Cheilodipterus quinquelineatus Chordata Chromis atripectoralis Coast and continental shelf Containers and aquaria (20-1000 L or < 1 m**2) Critical thermal maximum Duration EXP Experiment Experiment duration Fugacity of carbon dioxide (water) at sea surface temperature (wet air) Identification Laboratory experiment Lizard_Island_OA Mass Metabolic rate maximum standard dataset 2017 ftpangaea https://doi.org/10.1594/PANGAEA.92383310.1098/rsbl.2017.0135 2024-07-24T02:31:34Z Rising ocean temperatures are predicted to cause a poleward shift in the distribution of marine fishes occupying the extent of latitudes tolerable within their thermal range boundaries. A prevailing theory suggests that the upper thermal limits of fishes are constrained by hypoxia and ocean acidification. However, some eurythermal fish species do not conform to this theory, and maintain their upper thermal limits in hypoxia. Here we determine if the same is true for stenothermal species. In three coral reef fish species we tested the effect of hypoxia on upper thermal limits, measured as critical thermal maximum (CTmax). In one of these species we also quantified the effect of hypoxia on oxygen supply capacity, measured as aerobic scope (AS). In this species we also tested the effect of elevated CO2 (simulated ocean acidification) on the hypoxia sensitivity of CTmax. We found that CTmax was unaffected by progressive hypoxia down to approximately 35 mmHg, despite a substantial hypoxia-induced reduction in AS. Below approximately 35 mmHg, CTmax declined sharply with water oxygen tension (PwO2). Furthermore, the hypoxia sensitivity of CTmax was unaffected by elevated CO2. Our findings show that moderate hypoxia and ocean acidification do not constrain the upper thermal limits of these tropical, stenothermal fishes. Dataset Ocean acidification PANGAEA - Data Publisher for Earth & Environmental Science ENVELOPE(145.466670,145.466670,-14.666670,-14.666670)
institution Open Polar
collection PANGAEA - Data Publisher for Earth & Environmental Science
op_collection_id ftpangaea
language English
topic Acanthochromis polyacanthus
Aerobic scope of oxygen
standard error
Alkalinity
total
Animalia
Aragonite saturation state
Behaviour
Bicarbonate ion
Calcite saturation state
Calculated using CO2SYS
Calculated using seacarb after Nisumaa et al. (2010)
Carbon
inorganic
dissolved
Carbonate ion
Carbonate system computation flag
Carbon dioxide
Cheilodipterus quinquelineatus
Chordata
Chromis atripectoralis
Coast and continental shelf
Containers and aquaria (20-1000 L or < 1 m**2)
Critical thermal maximum
Duration
EXP
Experiment
Experiment duration
Fugacity of carbon dioxide (water) at sea surface temperature (wet air)
Identification
Laboratory experiment
Lizard_Island_OA
Mass
Metabolic rate
maximum
standard
spellingShingle Acanthochromis polyacanthus
Aerobic scope of oxygen
standard error
Alkalinity
total
Animalia
Aragonite saturation state
Behaviour
Bicarbonate ion
Calcite saturation state
Calculated using CO2SYS
Calculated using seacarb after Nisumaa et al. (2010)
Carbon
inorganic
dissolved
Carbonate ion
Carbonate system computation flag
Carbon dioxide
Cheilodipterus quinquelineatus
Chordata
Chromis atripectoralis
Coast and continental shelf
Containers and aquaria (20-1000 L or < 1 m**2)
Critical thermal maximum
Duration
EXP
Experiment
Experiment duration
Fugacity of carbon dioxide (water) at sea surface temperature (wet air)
Identification
Laboratory experiment
Lizard_Island_OA
Mass
Metabolic rate
maximum
standard
Ern, Rasmus
Johansen, Jacob L
Rummer, Jodie L
Esbaugh, Andrew J
Seawater carbonate chemistry and critical thermal maximum of coral reef fishes
topic_facet Acanthochromis polyacanthus
Aerobic scope of oxygen
standard error
Alkalinity
total
Animalia
Aragonite saturation state
Behaviour
Bicarbonate ion
Calcite saturation state
Calculated using CO2SYS
Calculated using seacarb after Nisumaa et al. (2010)
Carbon
inorganic
dissolved
Carbonate ion
Carbonate system computation flag
Carbon dioxide
Cheilodipterus quinquelineatus
Chordata
Chromis atripectoralis
Coast and continental shelf
Containers and aquaria (20-1000 L or < 1 m**2)
Critical thermal maximum
Duration
EXP
Experiment
Experiment duration
Fugacity of carbon dioxide (water) at sea surface temperature (wet air)
Identification
Laboratory experiment
Lizard_Island_OA
Mass
Metabolic rate
maximum
standard
description Rising ocean temperatures are predicted to cause a poleward shift in the distribution of marine fishes occupying the extent of latitudes tolerable within their thermal range boundaries. A prevailing theory suggests that the upper thermal limits of fishes are constrained by hypoxia and ocean acidification. However, some eurythermal fish species do not conform to this theory, and maintain their upper thermal limits in hypoxia. Here we determine if the same is true for stenothermal species. In three coral reef fish species we tested the effect of hypoxia on upper thermal limits, measured as critical thermal maximum (CTmax). In one of these species we also quantified the effect of hypoxia on oxygen supply capacity, measured as aerobic scope (AS). In this species we also tested the effect of elevated CO2 (simulated ocean acidification) on the hypoxia sensitivity of CTmax. We found that CTmax was unaffected by progressive hypoxia down to approximately 35 mmHg, despite a substantial hypoxia-induced reduction in AS. Below approximately 35 mmHg, CTmax declined sharply with water oxygen tension (PwO2). Furthermore, the hypoxia sensitivity of CTmax was unaffected by elevated CO2. Our findings show that moderate hypoxia and ocean acidification do not constrain the upper thermal limits of these tropical, stenothermal fishes.
format Dataset
author Ern, Rasmus
Johansen, Jacob L
Rummer, Jodie L
Esbaugh, Andrew J
author_facet Ern, Rasmus
Johansen, Jacob L
Rummer, Jodie L
Esbaugh, Andrew J
author_sort Ern, Rasmus
title Seawater carbonate chemistry and critical thermal maximum of coral reef fishes
title_short Seawater carbonate chemistry and critical thermal maximum of coral reef fishes
title_full Seawater carbonate chemistry and critical thermal maximum of coral reef fishes
title_fullStr Seawater carbonate chemistry and critical thermal maximum of coral reef fishes
title_full_unstemmed Seawater carbonate chemistry and critical thermal maximum of coral reef fishes
title_sort seawater carbonate chemistry and critical thermal maximum of coral reef fishes
publisher PANGAEA
publishDate 2017
url https://doi.pangaea.de/10.1594/PANGAEA.923833
https://doi.org/10.1594/PANGAEA.923833
op_coverage LATITUDE: -14.666670 * LONGITUDE: 145.466670
long_lat ENVELOPE(145.466670,145.466670,-14.666670,-14.666670)
genre Ocean acidification
genre_facet Ocean acidification
op_relation Ern, Rasmus; Johansen, Jacob L; Rummer, Jodie L; Esbaugh, Andrew J (2017): Effects of hypoxia and ocean acidification on the upper thermal niche boundaries of coral reef fishes. Biology Letters, 13(7), 20170135, https://doi.org/10.1098/rsbl.2017.0135
Gattuso, Jean-Pierre; Epitalon, Jean-Marie; Lavigne, Héloïse; Orr, James C; Gentili, Bernard; Hagens, Mathilde; Hofmann, Andreas; Mueller, Jens-Daniel; Proye, Aurélien; Rae, James; Soetaert, Karline (2019): seacarb: seawater carbonate chemistry with R. R package version 3.2.12. https://CRAN.R-project.org/package=seacarb
https://doi.pangaea.de/10.1594/PANGAEA.923833
https://doi.org/10.1594/PANGAEA.923833
op_rights CC-BY-4.0: Creative Commons Attribution 4.0 International
Access constraints: unrestricted
info:eu-repo/semantics/openAccess
op_doi https://doi.org/10.1594/PANGAEA.92383310.1098/rsbl.2017.0135
_version_ 1810469101317914624