A composite flow law to model deformation in the NEEM deep ice core, Greenland - The role of grain size, grain size distribution and premelting on ice deformation

Results from a rheological model based on the composite flow law of Goldsby and Kohlstedt (1997, 2001) applied to mean grain size and grain size distributions in the North Greenland Eemian Ice Drilling (NEEM) deep ice core predict that grain-size-sensitive flow produces almost all of the deformation...

Full description

Bibliographic Details
Main Authors: Weikusat, Ilka, Kuiper, Ernst-Jan N, de Bresser, Johannes H P, Jansen, Daniela, Pennock, Gillian M, Drury, Martyn R
Format: Dataset
Language:English
Published: PANGAEA 2020
Subjects:
ice
Online Access:https://doi.pangaea.de/10.1594/PANGAEA.920005
https://doi.org/10.1594/PANGAEA.920005
id ftpangaea:oai:pangaea.de:doi:10.1594/PANGAEA.920005
record_format openpolar
institution Open Polar
collection PANGAEA - Data Publisher for Earth & Environmental Science
op_collection_id ftpangaea
language English
topic composite flow law
File content
File format
File name
File size
grain-size sensitive creep
Greenland
ice
ICEDRILL
Ice drill
NEEM
North Greenland Eemian Ice Drilling
strain rate predictions
Uniform resource locator/link to file
spellingShingle composite flow law
File content
File format
File name
File size
grain-size sensitive creep
Greenland
ice
ICEDRILL
Ice drill
NEEM
North Greenland Eemian Ice Drilling
strain rate predictions
Uniform resource locator/link to file
Weikusat, Ilka
Kuiper, Ernst-Jan N
de Bresser, Johannes H P
Jansen, Daniela
Pennock, Gillian M
Drury, Martyn R
A composite flow law to model deformation in the NEEM deep ice core, Greenland - The role of grain size, grain size distribution and premelting on ice deformation
topic_facet composite flow law
File content
File format
File name
File size
grain-size sensitive creep
Greenland
ice
ICEDRILL
Ice drill
NEEM
North Greenland Eemian Ice Drilling
strain rate predictions
Uniform resource locator/link to file
description Results from a rheological model based on the composite flow law of Goldsby and Kohlstedt (1997, 2001) applied to mean grain size and grain size distributions in the North Greenland Eemian Ice Drilling (NEEM) deep ice core predict that grain-size-sensitive flow produces almost all of the deformation in the upper 2207 m, while dislocation creep hardly contributes to deformation. The difference in calculated strain rate between two model end-members is relatively small: (i) the micro-scale constant stress model where each grain deforms by the same stress and (ii) the micro-scale constant strain rate model where each grain deforms by the same strain rate. The predicted strain rate in the fine-grained Glacial ice (that is, ice deposited during the Last Glacial Maximum now at depths of 1419 to 2207 m) varies strongly within this depth range. Predicted strain rate is about 4-5 times higher than in the coarser-grained Holocene ice (0-1419 m). Two peaks in strain rate are predicted at about 1980 and 2100 m of depth. See also interpretations in publication (Kuiper et al. 2020 TC).
format Dataset
author Weikusat, Ilka
Kuiper, Ernst-Jan N
de Bresser, Johannes H P
Jansen, Daniela
Pennock, Gillian M
Drury, Martyn R
author_facet Weikusat, Ilka
Kuiper, Ernst-Jan N
de Bresser, Johannes H P
Jansen, Daniela
Pennock, Gillian M
Drury, Martyn R
author_sort Weikusat, Ilka
title A composite flow law to model deformation in the NEEM deep ice core, Greenland - The role of grain size, grain size distribution and premelting on ice deformation
title_short A composite flow law to model deformation in the NEEM deep ice core, Greenland - The role of grain size, grain size distribution and premelting on ice deformation
title_full A composite flow law to model deformation in the NEEM deep ice core, Greenland - The role of grain size, grain size distribution and premelting on ice deformation
title_fullStr A composite flow law to model deformation in the NEEM deep ice core, Greenland - The role of grain size, grain size distribution and premelting on ice deformation
title_full_unstemmed A composite flow law to model deformation in the NEEM deep ice core, Greenland - The role of grain size, grain size distribution and premelting on ice deformation
title_sort composite flow law to model deformation in the neem deep ice core, greenland - the role of grain size, grain size distribution and premelting on ice deformation
publisher PANGAEA
publishDate 2020
url https://doi.pangaea.de/10.1594/PANGAEA.920005
https://doi.org/10.1594/PANGAEA.920005
op_coverage LATITUDE: 77.450000 * LONGITUDE: -51.060000 * DATE/TIME START: 2009-05-01T00:00:00 * DATE/TIME END: 2009-08-20T00:00:00 * MINIMUM ELEVATION: 2545.0 m * MAXIMUM ELEVATION: 2545.0 m
long_lat ENVELOPE(-51.060000,-51.060000,77.450000,77.450000)
geographic Greenland
geographic_facet Greenland
genre Greenland
ice core
North Greenland
The Cryosphere
genre_facet Greenland
ice core
North Greenland
The Cryosphere
op_relation Kipfstuhl, Sepp (2010): Large area scan macroscope images from the NEEM ice core. Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, PANGAEA, https://doi.pangaea.de/10.1594/PANGAEA.743296
Kuiper, Ernst-Jan N; de Bresser, Johannes H P; Drury, Martyn R; Eichler, Jan; Pennock, Gillian M; Weikusat, Ilka (2020): Using a composite flow law to model deformation in the NEEM deep ice core, Greenland: Part 2 the role of grain size and premelting on ice deformation at high homologous temperature. The Cryosphere, https://doi.org/10.5194/tc-2018-275
Kuiper, Ernst-Jan N; Weikusat, Ilka; de Bresser, Johannes H P; Jansen, Daniela; Pennock, Gillian M; Drury, Martyn R (2020): Using a composite flow law to model deformation in the NEEM deep ice core, Greenland: Part 1 the role of grain size and grain size distribution on the deformation of Holocene and glacial ice. The Cryosphere, https://doi.org/10.5194/tc-2018-274
Weikusat, Ilka; Binder, Tobias; Kipfstuhl, Sepp (2020): Structural grain parameters from image analysis of large area scan macroscope images from the NEEM ice core. PANGAEA, https://doi.org/10.1594/PANGAEA.919775
Binder, Tobias (2014): Measurements of grain boundary networks in deep polar ice cores - A digital image processing approach. Heidelberg University Library, Dissertation, https://doi.org/10.11588/heidok.00016891
Binder, Tobias; Garbe, Christoph S; Wagenbach, Dietmar; Freitag, Johannes; Kipfstuhl, Sepp (2013): Extraction and parametrization of grain boundary networks in glacier ice, using a dedicated method of automatic image analysis. Journal of Microscopy, 250(2), 130-141, https://doi.org/10.1111/jmi.12029
Binder, Tobias; Weikusat, Ilka; Freitag, Johannes; Garbe, Christoph S; Wagenbach, Dietmar; Kipfstuhl, Sepp (2013): Microstructure through an Ice Sheet. Materials Science Forum, 753, 481-484, https://doi.org/10.4028/www.scientific.net/MSF.753.481
Goldsby, David; Kohlstedt, David (1997): Grain boundary sliding in fine-grained Ice I. Scripta Materialia, 37(9), 1399-1406, https://doi.org/10.1016/S1359-6462(97)00246-7
Goldsby, David; Kohlstedt, David (2001): Superplastic deformation of ice: Experimental observations. Journal of Geophysical Research: Solid Earth, 106(B6), 11017-11030, https://doi.org/10.1029/2000JB900336
https://doi.pangaea.de/10.1594/PANGAEA.920005
https://doi.org/10.1594/PANGAEA.920005
op_rights CC-BY-4.0: Creative Commons Attribution 4.0 International
Access constraints: unrestricted
info:eu-repo/semantics/openAccess
op_rightsnorm CC-BY
op_doi https://doi.org/10.1594/PANGAEA.920005
https://doi.org/10.5194/tc-2018-275
https://doi.org/10.5194/tc-2018-274
https://doi.org/10.1594/PANGAEA.919775
https://doi.org/10.11588/heidok.00016891
https://doi.org/10.1111/jmi.12029
https://doi.org/10
_version_ 1766015768578752512
spelling ftpangaea:oai:pangaea.de:doi:10.1594/PANGAEA.920005 2023-05-15T16:26:47+02:00 A composite flow law to model deformation in the NEEM deep ice core, Greenland - The role of grain size, grain size distribution and premelting on ice deformation Weikusat, Ilka Kuiper, Ernst-Jan N de Bresser, Johannes H P Jansen, Daniela Pennock, Gillian M Drury, Martyn R LATITUDE: 77.450000 * LONGITUDE: -51.060000 * DATE/TIME START: 2009-05-01T00:00:00 * DATE/TIME END: 2009-08-20T00:00:00 * MINIMUM ELEVATION: 2545.0 m * MAXIMUM ELEVATION: 2545.0 m 2020-07-09 text/tab-separated-values, 10 data points https://doi.pangaea.de/10.1594/PANGAEA.920005 https://doi.org/10.1594/PANGAEA.920005 en eng PANGAEA Kipfstuhl, Sepp (2010): Large area scan macroscope images from the NEEM ice core. Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, PANGAEA, https://doi.pangaea.de/10.1594/PANGAEA.743296 Kuiper, Ernst-Jan N; de Bresser, Johannes H P; Drury, Martyn R; Eichler, Jan; Pennock, Gillian M; Weikusat, Ilka (2020): Using a composite flow law to model deformation in the NEEM deep ice core, Greenland: Part 2 the role of grain size and premelting on ice deformation at high homologous temperature. The Cryosphere, https://doi.org/10.5194/tc-2018-275 Kuiper, Ernst-Jan N; Weikusat, Ilka; de Bresser, Johannes H P; Jansen, Daniela; Pennock, Gillian M; Drury, Martyn R (2020): Using a composite flow law to model deformation in the NEEM deep ice core, Greenland: Part 1 the role of grain size and grain size distribution on the deformation of Holocene and glacial ice. The Cryosphere, https://doi.org/10.5194/tc-2018-274 Weikusat, Ilka; Binder, Tobias; Kipfstuhl, Sepp (2020): Structural grain parameters from image analysis of large area scan macroscope images from the NEEM ice core. PANGAEA, https://doi.org/10.1594/PANGAEA.919775 Binder, Tobias (2014): Measurements of grain boundary networks in deep polar ice cores - A digital image processing approach. Heidelberg University Library, Dissertation, https://doi.org/10.11588/heidok.00016891 Binder, Tobias; Garbe, Christoph S; Wagenbach, Dietmar; Freitag, Johannes; Kipfstuhl, Sepp (2013): Extraction and parametrization of grain boundary networks in glacier ice, using a dedicated method of automatic image analysis. Journal of Microscopy, 250(2), 130-141, https://doi.org/10.1111/jmi.12029 Binder, Tobias; Weikusat, Ilka; Freitag, Johannes; Garbe, Christoph S; Wagenbach, Dietmar; Kipfstuhl, Sepp (2013): Microstructure through an Ice Sheet. Materials Science Forum, 753, 481-484, https://doi.org/10.4028/www.scientific.net/MSF.753.481 Goldsby, David; Kohlstedt, David (1997): Grain boundary sliding in fine-grained Ice I. Scripta Materialia, 37(9), 1399-1406, https://doi.org/10.1016/S1359-6462(97)00246-7 Goldsby, David; Kohlstedt, David (2001): Superplastic deformation of ice: Experimental observations. Journal of Geophysical Research: Solid Earth, 106(B6), 11017-11030, https://doi.org/10.1029/2000JB900336 https://doi.pangaea.de/10.1594/PANGAEA.920005 https://doi.org/10.1594/PANGAEA.920005 CC-BY-4.0: Creative Commons Attribution 4.0 International Access constraints: unrestricted info:eu-repo/semantics/openAccess CC-BY composite flow law File content File format File name File size grain-size sensitive creep Greenland ice ICEDRILL Ice drill NEEM North Greenland Eemian Ice Drilling strain rate predictions Uniform resource locator/link to file Dataset 2020 ftpangaea https://doi.org/10.1594/PANGAEA.920005 https://doi.org/10.5194/tc-2018-275 https://doi.org/10.5194/tc-2018-274 https://doi.org/10.1594/PANGAEA.919775 https://doi.org/10.11588/heidok.00016891 https://doi.org/10.1111/jmi.12029 https://doi.org/10 2023-01-20T09:13:47Z Results from a rheological model based on the composite flow law of Goldsby and Kohlstedt (1997, 2001) applied to mean grain size and grain size distributions in the North Greenland Eemian Ice Drilling (NEEM) deep ice core predict that grain-size-sensitive flow produces almost all of the deformation in the upper 2207 m, while dislocation creep hardly contributes to deformation. The difference in calculated strain rate between two model end-members is relatively small: (i) the micro-scale constant stress model where each grain deforms by the same stress and (ii) the micro-scale constant strain rate model where each grain deforms by the same strain rate. The predicted strain rate in the fine-grained Glacial ice (that is, ice deposited during the Last Glacial Maximum now at depths of 1419 to 2207 m) varies strongly within this depth range. Predicted strain rate is about 4-5 times higher than in the coarser-grained Holocene ice (0-1419 m). Two peaks in strain rate are predicted at about 1980 and 2100 m of depth. See also interpretations in publication (Kuiper et al. 2020 TC). Dataset Greenland ice core North Greenland The Cryosphere PANGAEA - Data Publisher for Earth & Environmental Science Greenland ENVELOPE(-51.060000,-51.060000,77.450000,77.450000)