Seawater carbonate chemistry and gene expression of a reef fish Acanthochromis polyacanthus

The impacts of ocean acidification will depend on the ability of marine organisms to tolerate, acclimate and eventually adapt to changes in ocean chemistry. Here, we use a unique transgenerational experiment to determine the molecular response of a coral reef fish to short-term, developmental and tr...

Full description

Bibliographic Details
Main Authors: Schunter, Celia, Welch, Megan J, Nilsson, Göran E, Rummer, Jodie L, Munday, Philip L, Ravasi, Timothy
Format: Dataset
Language:English
Published: PANGAEA 2018
Subjects:
EXP
pH
Online Access:https://doi.pangaea.de/10.1594/PANGAEA.900202
https://doi.org/10.1594/PANGAEA.900202
id ftpangaea:oai:pangaea.de:doi:10.1594/PANGAEA.900202
record_format openpolar
spelling ftpangaea:oai:pangaea.de:doi:10.1594/PANGAEA.900202 2023-05-15T17:51:00+02:00 Seawater carbonate chemistry and gene expression of a reef fish Acanthochromis polyacanthus Schunter, Celia Welch, Megan J Nilsson, Göran E Rummer, Jodie L Munday, Philip L Ravasi, Timothy LATITUDE: -18.616670 * LONGITUDE: 146.500000 * DATE/TIME START: 2011-11-01T00:00:00 * DATE/TIME END: 2012-05-31T00:00:00 2018-04-08 text/tab-separated-values, 20862 data points https://doi.pangaea.de/10.1594/PANGAEA.900202 https://doi.org/10.1594/PANGAEA.900202 en eng PANGAEA Gattuso, Jean-Pierre; Epitalon, Jean-Marie; Lavigne, Héloïse; Orr, James C; Gentili, Bernard; Proye, Aurélien; Soetaert, Karline; Rae, James (2016): seacarb: seawater carbonate chemistry with R. R package version 3.1. https://cran.r-project.org/package=seacarb https://doi.pangaea.de/10.1594/PANGAEA.900202 https://doi.org/10.1594/PANGAEA.900202 CC-BY-4.0: Creative Commons Attribution 4.0 International Access constraints: unrestricted info:eu-repo/semantics/openAccess CC-BY Supplement to: Schunter, Celia; Welch, Megan J; Nilsson, Göran E; Rummer, Jodie L; Munday, Philip L; Ravasi, Timothy (2018): An interplay between plasticity and parental phenotype determines impacts of ocean acidification on a reef fish. Nature Ecology & Evolution, 2(2), 334-342, https://doi.org/10.1038/s41559-017-0428-8 Acanthochromis polyacanthus Alkalinity total standard deviation Animalia Aragonite saturation state Bicarbonate ion Calcite saturation state Calculated using seacarb after Nisumaa et al. (2010) Carbon inorganic dissolved Carbonate ion Carbonate system computation flag Carbon dioxide Chordata Coast and continental shelf Containers and aquaria (20-1000 L or < 1 m**2) EXP Experiment Figure Fugacity of carbon dioxide (water) at sea surface temperature (wet air) Gene expression Gene expression (incl. proteomics) Gene name Great_Barrier_Reef_OA Laboratory experiment Nekton OA-ICC Ocean Acidification International Coordination Centre Partial pressure of carbon dioxide Partial pressure of carbon dioxide (water) at sea surface temperature (wet air) Pelagos pH Registration number of species Salinity Single species South Pacific Species Temperature water Dataset 2018 ftpangaea https://doi.org/10.1594/PANGAEA.900202 https://doi.org/10.1038/s41559-017-0428-8 2023-01-20T09:12:16Z The impacts of ocean acidification will depend on the ability of marine organisms to tolerate, acclimate and eventually adapt to changes in ocean chemistry. Here, we use a unique transgenerational experiment to determine the molecular response of a coral reef fish to short-term, developmental and transgenerational exposure to elevated CO2, and to test how these responses are influenced by variations in tolerance to elevated CO2 exhibited by the parents. Within-generation responses in gene expression to end-of-century predicted CO2 levels indicate that a self-amplifying cycle in GABAergic neurotransmission is triggered, explaining previously reported neurological and behavioural impairments. Furthermore, epigenetic regulator genes exhibited a within-generation specific response, but with some divergence due to parental phenotype. Importantly, we find that altered gene expression for the majority of within-generation responses returns to baseline levels following parental exposure to elevated CO2 conditions. Our results show that both parental variation in tolerance and cross-generation exposure to elevated CO2 are crucial factors in determining the response of reef fish to changing ocean chemistry. Dataset Ocean acidification PANGAEA - Data Publisher for Earth & Environmental Science Pacific ENVELOPE(146.500000,146.500000,-18.616670,-18.616670)
institution Open Polar
collection PANGAEA - Data Publisher for Earth & Environmental Science
op_collection_id ftpangaea
language English
topic Acanthochromis polyacanthus
Alkalinity
total
standard deviation
Animalia
Aragonite saturation state
Bicarbonate ion
Calcite saturation state
Calculated using seacarb after Nisumaa et al. (2010)
Carbon
inorganic
dissolved
Carbonate ion
Carbonate system computation flag
Carbon dioxide
Chordata
Coast and continental shelf
Containers and aquaria (20-1000 L or < 1 m**2)
EXP
Experiment
Figure
Fugacity of carbon dioxide (water) at sea surface temperature (wet air)
Gene expression
Gene expression (incl. proteomics)
Gene name
Great_Barrier_Reef_OA
Laboratory experiment
Nekton
OA-ICC
Ocean Acidification International Coordination Centre
Partial pressure of carbon dioxide
Partial pressure of carbon dioxide (water) at sea surface temperature (wet air)
Pelagos
pH
Registration number of species
Salinity
Single species
South Pacific
Species
Temperature
water
spellingShingle Acanthochromis polyacanthus
Alkalinity
total
standard deviation
Animalia
Aragonite saturation state
Bicarbonate ion
Calcite saturation state
Calculated using seacarb after Nisumaa et al. (2010)
Carbon
inorganic
dissolved
Carbonate ion
Carbonate system computation flag
Carbon dioxide
Chordata
Coast and continental shelf
Containers and aquaria (20-1000 L or < 1 m**2)
EXP
Experiment
Figure
Fugacity of carbon dioxide (water) at sea surface temperature (wet air)
Gene expression
Gene expression (incl. proteomics)
Gene name
Great_Barrier_Reef_OA
Laboratory experiment
Nekton
OA-ICC
Ocean Acidification International Coordination Centre
Partial pressure of carbon dioxide
Partial pressure of carbon dioxide (water) at sea surface temperature (wet air)
Pelagos
pH
Registration number of species
Salinity
Single species
South Pacific
Species
Temperature
water
Schunter, Celia
Welch, Megan J
Nilsson, Göran E
Rummer, Jodie L
Munday, Philip L
Ravasi, Timothy
Seawater carbonate chemistry and gene expression of a reef fish Acanthochromis polyacanthus
topic_facet Acanthochromis polyacanthus
Alkalinity
total
standard deviation
Animalia
Aragonite saturation state
Bicarbonate ion
Calcite saturation state
Calculated using seacarb after Nisumaa et al. (2010)
Carbon
inorganic
dissolved
Carbonate ion
Carbonate system computation flag
Carbon dioxide
Chordata
Coast and continental shelf
Containers and aquaria (20-1000 L or < 1 m**2)
EXP
Experiment
Figure
Fugacity of carbon dioxide (water) at sea surface temperature (wet air)
Gene expression
Gene expression (incl. proteomics)
Gene name
Great_Barrier_Reef_OA
Laboratory experiment
Nekton
OA-ICC
Ocean Acidification International Coordination Centre
Partial pressure of carbon dioxide
Partial pressure of carbon dioxide (water) at sea surface temperature (wet air)
Pelagos
pH
Registration number of species
Salinity
Single species
South Pacific
Species
Temperature
water
description The impacts of ocean acidification will depend on the ability of marine organisms to tolerate, acclimate and eventually adapt to changes in ocean chemistry. Here, we use a unique transgenerational experiment to determine the molecular response of a coral reef fish to short-term, developmental and transgenerational exposure to elevated CO2, and to test how these responses are influenced by variations in tolerance to elevated CO2 exhibited by the parents. Within-generation responses in gene expression to end-of-century predicted CO2 levels indicate that a self-amplifying cycle in GABAergic neurotransmission is triggered, explaining previously reported neurological and behavioural impairments. Furthermore, epigenetic regulator genes exhibited a within-generation specific response, but with some divergence due to parental phenotype. Importantly, we find that altered gene expression for the majority of within-generation responses returns to baseline levels following parental exposure to elevated CO2 conditions. Our results show that both parental variation in tolerance and cross-generation exposure to elevated CO2 are crucial factors in determining the response of reef fish to changing ocean chemistry.
format Dataset
author Schunter, Celia
Welch, Megan J
Nilsson, Göran E
Rummer, Jodie L
Munday, Philip L
Ravasi, Timothy
author_facet Schunter, Celia
Welch, Megan J
Nilsson, Göran E
Rummer, Jodie L
Munday, Philip L
Ravasi, Timothy
author_sort Schunter, Celia
title Seawater carbonate chemistry and gene expression of a reef fish Acanthochromis polyacanthus
title_short Seawater carbonate chemistry and gene expression of a reef fish Acanthochromis polyacanthus
title_full Seawater carbonate chemistry and gene expression of a reef fish Acanthochromis polyacanthus
title_fullStr Seawater carbonate chemistry and gene expression of a reef fish Acanthochromis polyacanthus
title_full_unstemmed Seawater carbonate chemistry and gene expression of a reef fish Acanthochromis polyacanthus
title_sort seawater carbonate chemistry and gene expression of a reef fish acanthochromis polyacanthus
publisher PANGAEA
publishDate 2018
url https://doi.pangaea.de/10.1594/PANGAEA.900202
https://doi.org/10.1594/PANGAEA.900202
op_coverage LATITUDE: -18.616670 * LONGITUDE: 146.500000 * DATE/TIME START: 2011-11-01T00:00:00 * DATE/TIME END: 2012-05-31T00:00:00
long_lat ENVELOPE(146.500000,146.500000,-18.616670,-18.616670)
geographic Pacific
geographic_facet Pacific
genre Ocean acidification
genre_facet Ocean acidification
op_source Supplement to: Schunter, Celia; Welch, Megan J; Nilsson, Göran E; Rummer, Jodie L; Munday, Philip L; Ravasi, Timothy (2018): An interplay between plasticity and parental phenotype determines impacts of ocean acidification on a reef fish. Nature Ecology & Evolution, 2(2), 334-342, https://doi.org/10.1038/s41559-017-0428-8
op_relation Gattuso, Jean-Pierre; Epitalon, Jean-Marie; Lavigne, Héloïse; Orr, James C; Gentili, Bernard; Proye, Aurélien; Soetaert, Karline; Rae, James (2016): seacarb: seawater carbonate chemistry with R. R package version 3.1. https://cran.r-project.org/package=seacarb
https://doi.pangaea.de/10.1594/PANGAEA.900202
https://doi.org/10.1594/PANGAEA.900202
op_rights CC-BY-4.0: Creative Commons Attribution 4.0 International
Access constraints: unrestricted
info:eu-repo/semantics/openAccess
op_rightsnorm CC-BY
op_doi https://doi.org/10.1594/PANGAEA.900202
https://doi.org/10.1038/s41559-017-0428-8
_version_ 1766157976291246080