Intact polar diacylglycerol (IP-DAG) lipids measured in cultures of four Antarctic diatom isolates

Diatoms were isolated by Adrian Marchetti (orcid:0000-0003-4608-4775) from waters of the Bellingshausen Sea and grown on replete media. Cells were collected onto 0.7 µm GF/F filters. Extraction was performed using a modified Bligh and Dyer (Bligh and Dyer, 1959; https://doi.org/10.1139/o59-099) meth...

Full description

Bibliographic Details
Main Authors: Collins, James R, Ducklow, Hugh W, Marchetti, Adrian, Van Mooy, Benjamin A S
Format: Dataset
Language:English
Published: PANGAEA 2017
Subjects:
Online Access:https://doi.pangaea.de/10.1594/PANGAEA.879617
https://doi.org/10.1594/PANGAEA.879617
id ftpangaea:oai:pangaea.de:doi:10.1594/PANGAEA.879617
record_format openpolar
institution Open Polar
collection PANGAEA - Data Publisher for Earth & Environmental Science
op_collection_id ftpangaea
language English
topic Diacylglyceryl trimethylhomoserine and diacylglyceryl hydroxymethyl-trimethyl-beta-alanine 30:0
Diacylglyceryl trimethylhomoserine and diacylglyceryl hydroxymethyl-trimethyl-beta-alanine 30:1
Diacylglyceryl trimethylhomoserine and diacylglyceryl hydroxymethyl-trimethyl-beta-alanine 32:2
Diacylglyceryl trimethylhomoserine and diacylglyceryl hydroxymethyl-trimethyl-beta-alanine 33:5
Diacylglyceryl trimethylhomoserine and diacylglyceryl hydroxymethyl-trimethyl-beta-alanine 34:5
Diacylglyceryl trimethylhomoserine and diacylglyceryl hydroxymethyl-trimethyl-beta-alanine 36:6
Diacylglyceryl trimethylhomoserine and diacylglyceryl hydroxymethyl-trimethyl-beta-alanine 40:10
Digalactosyldiacylglycerol 30:0
Digalactosyldiacylglycerol 30:1
Digalactosyldiacylglycerol 30:2
Digalactosyldiacylglycerol 30:4
Digalactosyldiacylglycerol 31:3
Digalactosyldiacylglycerol 32:1
Digalactosyldiacylglycerol 32:2
Digalactosyldiacylglycerol 32:3
Digalactosyldiacylglycerol 32:4
Digalactosyldiacylglycerol 32:5
Digalactosyldiacylglycerol 32:6
Digalactosyldiacylglycerol 32:7
Digalactosyldiacylglycerol 34:2
Digalactosyldiacylglycerol 34:3
Digalactosyldiacylglycerol 34:6
Digalactosyldiacylglycerol 34:7
Digalactosyldiacylglycerol 36:2
Digalactosyldiacylglycerol 36:4
Digalactosyldiacylglycerol 36:5
Digalactosyldiacylglycerol 36:6
Digalactosyldiacylglycerol 36:7
Digalactosyldiacylglycerol 36:8
Digalactosyldiacylglycerol 36:9
Digalactosyldiacylglycerol 37:8
Digalactosyldiacylglycerol 38:9
Monitoring station
Monogalactosyldiacylglycerol 30:0
Monogalactosyldiacylglycerol 30:1
Monogalactosyldiacylglycerol 30:2
Monogalactosyldiacylglycerol 30:3
Monogalactosyldiacylglycerol 30:4
Monogalactosyldiacylglycerol 32:0
Monogalactosyldiacylglycerol 32:1
Monogalactosyldiacylglycerol 32:2
Monogalactosyldiacylglycerol 32:3
Monogalactosyldiacylglycerol 32:4
Monogalactosyldiacylglycerol 32:5
Monogalactosyldiacylglycerol 32:6
Monogalactosyldiacylglycerol 32:7
Monogalactosyldiacylglycerol 32:8
Monogalactosyldiacylglycerol 34:0
Monogalactosyldiacylglycerol 34:1
Monogalactosyldiacylglycerol 34:2
spellingShingle Diacylglyceryl trimethylhomoserine and diacylglyceryl hydroxymethyl-trimethyl-beta-alanine 30:0
Diacylglyceryl trimethylhomoserine and diacylglyceryl hydroxymethyl-trimethyl-beta-alanine 30:1
Diacylglyceryl trimethylhomoserine and diacylglyceryl hydroxymethyl-trimethyl-beta-alanine 32:2
Diacylglyceryl trimethylhomoserine and diacylglyceryl hydroxymethyl-trimethyl-beta-alanine 33:5
Diacylglyceryl trimethylhomoserine and diacylglyceryl hydroxymethyl-trimethyl-beta-alanine 34:5
Diacylglyceryl trimethylhomoserine and diacylglyceryl hydroxymethyl-trimethyl-beta-alanine 36:6
Diacylglyceryl trimethylhomoserine and diacylglyceryl hydroxymethyl-trimethyl-beta-alanine 40:10
Digalactosyldiacylglycerol 30:0
Digalactosyldiacylglycerol 30:1
Digalactosyldiacylglycerol 30:2
Digalactosyldiacylglycerol 30:4
Digalactosyldiacylglycerol 31:3
Digalactosyldiacylglycerol 32:1
Digalactosyldiacylglycerol 32:2
Digalactosyldiacylglycerol 32:3
Digalactosyldiacylglycerol 32:4
Digalactosyldiacylglycerol 32:5
Digalactosyldiacylglycerol 32:6
Digalactosyldiacylglycerol 32:7
Digalactosyldiacylglycerol 34:2
Digalactosyldiacylglycerol 34:3
Digalactosyldiacylglycerol 34:6
Digalactosyldiacylglycerol 34:7
Digalactosyldiacylglycerol 36:2
Digalactosyldiacylglycerol 36:4
Digalactosyldiacylglycerol 36:5
Digalactosyldiacylglycerol 36:6
Digalactosyldiacylglycerol 36:7
Digalactosyldiacylglycerol 36:8
Digalactosyldiacylglycerol 36:9
Digalactosyldiacylglycerol 37:8
Digalactosyldiacylglycerol 38:9
Monitoring station
Monogalactosyldiacylglycerol 30:0
Monogalactosyldiacylglycerol 30:1
Monogalactosyldiacylglycerol 30:2
Monogalactosyldiacylglycerol 30:3
Monogalactosyldiacylglycerol 30:4
Monogalactosyldiacylglycerol 32:0
Monogalactosyldiacylglycerol 32:1
Monogalactosyldiacylglycerol 32:2
Monogalactosyldiacylglycerol 32:3
Monogalactosyldiacylglycerol 32:4
Monogalactosyldiacylglycerol 32:5
Monogalactosyldiacylglycerol 32:6
Monogalactosyldiacylglycerol 32:7
Monogalactosyldiacylglycerol 32:8
Monogalactosyldiacylglycerol 34:0
Monogalactosyldiacylglycerol 34:1
Monogalactosyldiacylglycerol 34:2
Collins, James R
Ducklow, Hugh W
Marchetti, Adrian
Van Mooy, Benjamin A S
Intact polar diacylglycerol (IP-DAG) lipids measured in cultures of four Antarctic diatom isolates
topic_facet Diacylglyceryl trimethylhomoserine and diacylglyceryl hydroxymethyl-trimethyl-beta-alanine 30:0
Diacylglyceryl trimethylhomoserine and diacylglyceryl hydroxymethyl-trimethyl-beta-alanine 30:1
Diacylglyceryl trimethylhomoserine and diacylglyceryl hydroxymethyl-trimethyl-beta-alanine 32:2
Diacylglyceryl trimethylhomoserine and diacylglyceryl hydroxymethyl-trimethyl-beta-alanine 33:5
Diacylglyceryl trimethylhomoserine and diacylglyceryl hydroxymethyl-trimethyl-beta-alanine 34:5
Diacylglyceryl trimethylhomoserine and diacylglyceryl hydroxymethyl-trimethyl-beta-alanine 36:6
Diacylglyceryl trimethylhomoserine and diacylglyceryl hydroxymethyl-trimethyl-beta-alanine 40:10
Digalactosyldiacylglycerol 30:0
Digalactosyldiacylglycerol 30:1
Digalactosyldiacylglycerol 30:2
Digalactosyldiacylglycerol 30:4
Digalactosyldiacylglycerol 31:3
Digalactosyldiacylglycerol 32:1
Digalactosyldiacylglycerol 32:2
Digalactosyldiacylglycerol 32:3
Digalactosyldiacylglycerol 32:4
Digalactosyldiacylglycerol 32:5
Digalactosyldiacylglycerol 32:6
Digalactosyldiacylglycerol 32:7
Digalactosyldiacylglycerol 34:2
Digalactosyldiacylglycerol 34:3
Digalactosyldiacylglycerol 34:6
Digalactosyldiacylglycerol 34:7
Digalactosyldiacylglycerol 36:2
Digalactosyldiacylglycerol 36:4
Digalactosyldiacylglycerol 36:5
Digalactosyldiacylglycerol 36:6
Digalactosyldiacylglycerol 36:7
Digalactosyldiacylglycerol 36:8
Digalactosyldiacylglycerol 36:9
Digalactosyldiacylglycerol 37:8
Digalactosyldiacylglycerol 38:9
Monitoring station
Monogalactosyldiacylglycerol 30:0
Monogalactosyldiacylglycerol 30:1
Monogalactosyldiacylglycerol 30:2
Monogalactosyldiacylglycerol 30:3
Monogalactosyldiacylglycerol 30:4
Monogalactosyldiacylglycerol 32:0
Monogalactosyldiacylglycerol 32:1
Monogalactosyldiacylglycerol 32:2
Monogalactosyldiacylglycerol 32:3
Monogalactosyldiacylglycerol 32:4
Monogalactosyldiacylglycerol 32:5
Monogalactosyldiacylglycerol 32:6
Monogalactosyldiacylglycerol 32:7
Monogalactosyldiacylglycerol 32:8
Monogalactosyldiacylglycerol 34:0
Monogalactosyldiacylglycerol 34:1
Monogalactosyldiacylglycerol 34:2
description Diatoms were isolated by Adrian Marchetti (orcid:0000-0003-4608-4775) from waters of the Bellingshausen Sea and grown on replete media. Cells were collected onto 0.7 µm GF/F filters. Extraction was performed using a modified Bligh and Dyer (Bligh and Dyer, 1959; https://doi.org/10.1139/o59-099) method described in Popendorf et al. (2013; https://doi.org/10.1007/s11745-012-3748-0). Lipid extracts were analyzed by HPLC-ESI-MS with data dependent-MS2 acquisition on a high-resolution, accurate mass Thermo Q Exactive Hybrid Quadrupole-Orbitrap mass spectrometer (ThermoFisher Scientific, Waltham, MA, USA) coupled to an Agilent 1200 HPLC system (Agilent, Santa Clara, CA, USA). The HPLC-ESI-MS method is described in Collins et al., 2016 (https://doi.org/10.1021/acs.analchem.6b01260). The LOBSTAHS lipidomics discovery software (Collins et al., 2016; https://doi.org/10.1021/acs.analchem.6b01260) was used to putatively identify HPLC-MS features in the data. We confirmed each LOBSTAHS identification using two additional means: (1) via comparison of data-dependent MS2 spectra with those from authentic standards or published reference spectra and (2) by requiring the presence of the same compound identity in data acquired in the opposite HPLC-ESI-MS ionization mode. We confirmed all LOBSTAHS identities at the lipid class level (e.g., PC versus PE, or MGDG versus TAG) using a new, experimental LOBSTAHS feature which automatically detects diagnostic product ion fragments and constant neutral losses (as given in Popendorf et al., 2013; https://doi.org/10.1007/s11745-012-3748-0) in the available data-dependent MS2 spectra for each sample. After identification, quantification of analytes was performed using a series of standard curves, followed by normalization to concentration of an internal standard. Lipid identities are resolved only to the level of bulk fatty acid composition (i.e., the sum of the properties of the substituents at both the sn-1 and sn-2 positions). As a result, in some cases (e.g., PC 40:8), several different ...
format Dataset
author Collins, James R
Ducklow, Hugh W
Marchetti, Adrian
Van Mooy, Benjamin A S
author_facet Collins, James R
Ducklow, Hugh W
Marchetti, Adrian
Van Mooy, Benjamin A S
author_sort Collins, James R
title Intact polar diacylglycerol (IP-DAG) lipids measured in cultures of four Antarctic diatom isolates
title_short Intact polar diacylglycerol (IP-DAG) lipids measured in cultures of four Antarctic diatom isolates
title_full Intact polar diacylglycerol (IP-DAG) lipids measured in cultures of four Antarctic diatom isolates
title_fullStr Intact polar diacylglycerol (IP-DAG) lipids measured in cultures of four Antarctic diatom isolates
title_full_unstemmed Intact polar diacylglycerol (IP-DAG) lipids measured in cultures of four Antarctic diatom isolates
title_sort intact polar diacylglycerol (ip-dag) lipids measured in cultures of four antarctic diatom isolates
publisher PANGAEA
publishDate 2017
url https://doi.pangaea.de/10.1594/PANGAEA.879617
https://doi.org/10.1594/PANGAEA.879617
op_coverage LATITUDE: -64.766670 * LONGITUDE: -64.050000
long_lat ENVELOPE(-81.366,-81.366,50.550,50.550)
ENVELOPE(-64.050000,-64.050000,-64.766670,-64.766670)
geographic Antarctic
Bellingshausen Sea
Dyer
geographic_facet Antarctic
Bellingshausen Sea
Dyer
genre Antarc*
Antarctic
Bellingshausen Sea
genre_facet Antarc*
Antarctic
Bellingshausen Sea
op_relation https://doi.org/10.1594/PANGAEA.879582
Collins, James R; Fredricks, Helen F; Bowman, Jeff S; Ward, Collin P; Moreno, Carly; Longnecker, Krista; Marchetti, Adrian; Hansel, Colleen M; Ducklow, Hugh W; Van Mooy, Benjamin A S (2018): The molecular products and biogeochemical significance of lipid photooxidation in West Antarctic surface waters. Geochimica et Cosmochimica Acta, 232, 244-264, https://doi.org/10.1016/j.gca.2018.04.030
https://doi.pangaea.de/10.1594/PANGAEA.879617
https://doi.org/10.1594/PANGAEA.879617
op_rights CC-BY-3.0: Creative Commons Attribution 3.0 Unported
Access constraints: unrestricted
info:eu-repo/semantics/openAccess
op_rightsnorm CC-BY
op_doi https://doi.org/10.1594/PANGAEA.879617
https://doi.org/10.1594/PANGAEA.879582
https://doi.org/10.1016/j.gca.2018.04.030
_version_ 1766262970742996992
spelling ftpangaea:oai:pangaea.de:doi:10.1594/PANGAEA.879617 2023-05-15T13:55:58+02:00 Intact polar diacylglycerol (IP-DAG) lipids measured in cultures of four Antarctic diatom isolates Collins, James R Ducklow, Hugh W Marchetti, Adrian Van Mooy, Benjamin A S LATITUDE: -64.766670 * LONGITUDE: -64.050000 2017-08-15 text/tab-separated-values, 1251 data points https://doi.pangaea.de/10.1594/PANGAEA.879617 https://doi.org/10.1594/PANGAEA.879617 en eng PANGAEA https://doi.org/10.1594/PANGAEA.879582 Collins, James R; Fredricks, Helen F; Bowman, Jeff S; Ward, Collin P; Moreno, Carly; Longnecker, Krista; Marchetti, Adrian; Hansel, Colleen M; Ducklow, Hugh W; Van Mooy, Benjamin A S (2018): The molecular products and biogeochemical significance of lipid photooxidation in West Antarctic surface waters. Geochimica et Cosmochimica Acta, 232, 244-264, https://doi.org/10.1016/j.gca.2018.04.030 https://doi.pangaea.de/10.1594/PANGAEA.879617 https://doi.org/10.1594/PANGAEA.879617 CC-BY-3.0: Creative Commons Attribution 3.0 Unported Access constraints: unrestricted info:eu-repo/semantics/openAccess CC-BY Diacylglyceryl trimethylhomoserine and diacylglyceryl hydroxymethyl-trimethyl-beta-alanine 30:0 Diacylglyceryl trimethylhomoserine and diacylglyceryl hydroxymethyl-trimethyl-beta-alanine 30:1 Diacylglyceryl trimethylhomoserine and diacylglyceryl hydroxymethyl-trimethyl-beta-alanine 32:2 Diacylglyceryl trimethylhomoserine and diacylglyceryl hydroxymethyl-trimethyl-beta-alanine 33:5 Diacylglyceryl trimethylhomoserine and diacylglyceryl hydroxymethyl-trimethyl-beta-alanine 34:5 Diacylglyceryl trimethylhomoserine and diacylglyceryl hydroxymethyl-trimethyl-beta-alanine 36:6 Diacylglyceryl trimethylhomoserine and diacylglyceryl hydroxymethyl-trimethyl-beta-alanine 40:10 Digalactosyldiacylglycerol 30:0 Digalactosyldiacylglycerol 30:1 Digalactosyldiacylglycerol 30:2 Digalactosyldiacylglycerol 30:4 Digalactosyldiacylglycerol 31:3 Digalactosyldiacylglycerol 32:1 Digalactosyldiacylglycerol 32:2 Digalactosyldiacylglycerol 32:3 Digalactosyldiacylglycerol 32:4 Digalactosyldiacylglycerol 32:5 Digalactosyldiacylglycerol 32:6 Digalactosyldiacylglycerol 32:7 Digalactosyldiacylglycerol 34:2 Digalactosyldiacylglycerol 34:3 Digalactosyldiacylglycerol 34:6 Digalactosyldiacylglycerol 34:7 Digalactosyldiacylglycerol 36:2 Digalactosyldiacylglycerol 36:4 Digalactosyldiacylglycerol 36:5 Digalactosyldiacylglycerol 36:6 Digalactosyldiacylglycerol 36:7 Digalactosyldiacylglycerol 36:8 Digalactosyldiacylglycerol 36:9 Digalactosyldiacylglycerol 37:8 Digalactosyldiacylglycerol 38:9 Monitoring station Monogalactosyldiacylglycerol 30:0 Monogalactosyldiacylglycerol 30:1 Monogalactosyldiacylglycerol 30:2 Monogalactosyldiacylglycerol 30:3 Monogalactosyldiacylglycerol 30:4 Monogalactosyldiacylglycerol 32:0 Monogalactosyldiacylglycerol 32:1 Monogalactosyldiacylglycerol 32:2 Monogalactosyldiacylglycerol 32:3 Monogalactosyldiacylglycerol 32:4 Monogalactosyldiacylglycerol 32:5 Monogalactosyldiacylglycerol 32:6 Monogalactosyldiacylglycerol 32:7 Monogalactosyldiacylglycerol 32:8 Monogalactosyldiacylglycerol 34:0 Monogalactosyldiacylglycerol 34:1 Monogalactosyldiacylglycerol 34:2 Dataset 2017 ftpangaea https://doi.org/10.1594/PANGAEA.879617 https://doi.org/10.1594/PANGAEA.879582 https://doi.org/10.1016/j.gca.2018.04.030 2023-01-20T09:57:10Z Diatoms were isolated by Adrian Marchetti (orcid:0000-0003-4608-4775) from waters of the Bellingshausen Sea and grown on replete media. Cells were collected onto 0.7 µm GF/F filters. Extraction was performed using a modified Bligh and Dyer (Bligh and Dyer, 1959; https://doi.org/10.1139/o59-099) method described in Popendorf et al. (2013; https://doi.org/10.1007/s11745-012-3748-0). Lipid extracts were analyzed by HPLC-ESI-MS with data dependent-MS2 acquisition on a high-resolution, accurate mass Thermo Q Exactive Hybrid Quadrupole-Orbitrap mass spectrometer (ThermoFisher Scientific, Waltham, MA, USA) coupled to an Agilent 1200 HPLC system (Agilent, Santa Clara, CA, USA). The HPLC-ESI-MS method is described in Collins et al., 2016 (https://doi.org/10.1021/acs.analchem.6b01260). The LOBSTAHS lipidomics discovery software (Collins et al., 2016; https://doi.org/10.1021/acs.analchem.6b01260) was used to putatively identify HPLC-MS features in the data. We confirmed each LOBSTAHS identification using two additional means: (1) via comparison of data-dependent MS2 spectra with those from authentic standards or published reference spectra and (2) by requiring the presence of the same compound identity in data acquired in the opposite HPLC-ESI-MS ionization mode. We confirmed all LOBSTAHS identities at the lipid class level (e.g., PC versus PE, or MGDG versus TAG) using a new, experimental LOBSTAHS feature which automatically detects diagnostic product ion fragments and constant neutral losses (as given in Popendorf et al., 2013; https://doi.org/10.1007/s11745-012-3748-0) in the available data-dependent MS2 spectra for each sample. After identification, quantification of analytes was performed using a series of standard curves, followed by normalization to concentration of an internal standard. Lipid identities are resolved only to the level of bulk fatty acid composition (i.e., the sum of the properties of the substituents at both the sn-1 and sn-2 positions). As a result, in some cases (e.g., PC 40:8), several different ... Dataset Antarc* Antarctic Bellingshausen Sea PANGAEA - Data Publisher for Earth & Environmental Science Antarctic Bellingshausen Sea Dyer ENVELOPE(-81.366,-81.366,50.550,50.550) ENVELOPE(-64.050000,-64.050000,-64.766670,-64.766670)