Negative effects of ocean acidification on calcification vary within the coccolithophore genus Calcidiscus

A large percentage of CO2 emitted into the atmosphere is absorbed by the oceans, causing chemical changes in surface waters known as ocean acidification (OA). Despite the high interest and increased pace of OA research to understand the effects of OA on marine organisms, many ecologically important...

Full description

Bibliographic Details
Main Authors: Diner, Rachel E, Benner, Ina, Passow, Uta, Komada, Tomoko, Carpenter, E J, Stillman, Jonathon H
Format: Dataset
Language:English
Published: PANGAEA 2015
Subjects:
Online Access:https://doi.pangaea.de/10.1594/PANGAEA.849339
https://doi.org/10.1594/PANGAEA.849339
id ftpangaea:oai:pangaea.de:doi:10.1594/PANGAEA.849339
record_format openpolar
spelling ftpangaea:oai:pangaea.de:doi:10.1594/PANGAEA.849339 2023-05-15T17:50:05+02:00 Negative effects of ocean acidification on calcification vary within the coccolithophore genus Calcidiscus Diner, Rachel E Benner, Ina Passow, Uta Komada, Tomoko Carpenter, E J Stillman, Jonathon H 2015-09-14 text/tab-separated-values, 4298 data points https://doi.pangaea.de/10.1594/PANGAEA.849339 https://doi.org/10.1594/PANGAEA.849339 en eng PANGAEA Gattuso, Jean-Pierre; Epitalon, Jean-Marie; Lavigne, Héloïse (2015): seacarb: seawater carbonate chemistry with R. R package version 3.0.8. https://cran.r-project.org/package=seacarb https://doi.pangaea.de/10.1594/PANGAEA.849339 https://doi.org/10.1594/PANGAEA.849339 CC-BY-3.0: Creative Commons Attribution 3.0 Unported Access constraints: unrestricted info:eu-repo/semantics/openAccess CC-BY Supplement to: Diner, Rachel E; Benner, Ina; Passow, Uta; Komada, Tomoko; Carpenter, E J; Stillman, Jonathon H (2015): Negative effects of ocean acidification on calcification vary within the coccolithophore genus Calcidiscus. Marine Biology, 162(6), 1287-1305, https://doi.org/10.1007/s00227-015-2669-x Alkalinity total standard error Aragonite saturation state Bicarbonate ion Biomass/Abundance/Elemental composition Bottles or small containers/Aquaria (<20 L) Calcidiscus leptoporus Calcidiscus quadriperforatus Calcification/Dissolution Calcite saturation state Calculated Calculated using CO2calc Calculated using seacarb after Nisumaa et al. (2010) Carbon inorganic dissolved particulate per cell organic Carbonate ion Carbonate system computation flag Carbon dioxide Change Chromista Coccoliths Coulometric titration Figure Fugacity of carbon dioxide (water) at sea surface temperature (wet air) Growth/Morphology Growth rate Haptophyta Laboratory experiment Laboratory strains Not applicable OA-ICC Ocean Acidification International Coordination Centre Dataset 2015 ftpangaea https://doi.org/10.1594/PANGAEA.849339 https://doi.org/10.1007/s00227-015-2669-x 2023-01-20T09:06:17Z A large percentage of CO2 emitted into the atmosphere is absorbed by the oceans, causing chemical changes in surface waters known as ocean acidification (OA). Despite the high interest and increased pace of OA research to understand the effects of OA on marine organisms, many ecologically important organisms remain unstudied. Calcidiscus is a heavily calcified coccolithophore genus that is widespread and genetically and morphologically diverse. It contributes substantially to global calcium carbonate production, organic carbon production, oceanic carbon burial, and ocean-atmosphere CO2 exchange. Despite the importance of this genus, relatively little work has examined its responses to OA. We examined changes in growth, morphology, and carbon allocation in multiple strains of Calcidiscus leptoporus in response to ocean acidification. We also, for the first time, examined the OA response of Calcidiscus quadriperforatus, a larger and more heavily calcified Calcidiscus congener. All Calcidiscus coccolithophores responded negatively to OA with impaired coccolith morphology and a decreased ratio of particulate inorganic to organic carbon (PIC:POC). However, strains responded variably; C. quadriperforatus showed the most sensitivity, while the most lightly calcified strain of C. leptoporus showed little response to OA. Our findings suggest that calcium carbonate production relative to organic carbon production by Calcidiscus coccolithophores may decrease in future oceans and that Calcidiscus distributions may shift if more resilient strains and species become dominant in assemblages. This study demonstrates that variable responses to OA may be strain or species specific in a way that is closely linked to physiological traits, such as cellular calcite quota. Dataset Ocean acidification PANGAEA - Data Publisher for Earth & Environmental Science
institution Open Polar
collection PANGAEA - Data Publisher for Earth & Environmental Science
op_collection_id ftpangaea
language English
topic Alkalinity
total
standard error
Aragonite saturation state
Bicarbonate ion
Biomass/Abundance/Elemental composition
Bottles or small containers/Aquaria (<20 L)
Calcidiscus leptoporus
Calcidiscus quadriperforatus
Calcification/Dissolution
Calcite saturation state
Calculated
Calculated using CO2calc
Calculated using seacarb after Nisumaa et al. (2010)
Carbon
inorganic
dissolved
particulate
per cell
organic
Carbonate ion
Carbonate system computation flag
Carbon dioxide
Change
Chromista
Coccoliths
Coulometric titration
Figure
Fugacity of carbon dioxide (water) at sea surface temperature (wet air)
Growth/Morphology
Growth rate
Haptophyta
Laboratory experiment
Laboratory strains
Not applicable
OA-ICC
Ocean Acidification International Coordination Centre
spellingShingle Alkalinity
total
standard error
Aragonite saturation state
Bicarbonate ion
Biomass/Abundance/Elemental composition
Bottles or small containers/Aquaria (<20 L)
Calcidiscus leptoporus
Calcidiscus quadriperforatus
Calcification/Dissolution
Calcite saturation state
Calculated
Calculated using CO2calc
Calculated using seacarb after Nisumaa et al. (2010)
Carbon
inorganic
dissolved
particulate
per cell
organic
Carbonate ion
Carbonate system computation flag
Carbon dioxide
Change
Chromista
Coccoliths
Coulometric titration
Figure
Fugacity of carbon dioxide (water) at sea surface temperature (wet air)
Growth/Morphology
Growth rate
Haptophyta
Laboratory experiment
Laboratory strains
Not applicable
OA-ICC
Ocean Acidification International Coordination Centre
Diner, Rachel E
Benner, Ina
Passow, Uta
Komada, Tomoko
Carpenter, E J
Stillman, Jonathon H
Negative effects of ocean acidification on calcification vary within the coccolithophore genus Calcidiscus
topic_facet Alkalinity
total
standard error
Aragonite saturation state
Bicarbonate ion
Biomass/Abundance/Elemental composition
Bottles or small containers/Aquaria (<20 L)
Calcidiscus leptoporus
Calcidiscus quadriperforatus
Calcification/Dissolution
Calcite saturation state
Calculated
Calculated using CO2calc
Calculated using seacarb after Nisumaa et al. (2010)
Carbon
inorganic
dissolved
particulate
per cell
organic
Carbonate ion
Carbonate system computation flag
Carbon dioxide
Change
Chromista
Coccoliths
Coulometric titration
Figure
Fugacity of carbon dioxide (water) at sea surface temperature (wet air)
Growth/Morphology
Growth rate
Haptophyta
Laboratory experiment
Laboratory strains
Not applicable
OA-ICC
Ocean Acidification International Coordination Centre
description A large percentage of CO2 emitted into the atmosphere is absorbed by the oceans, causing chemical changes in surface waters known as ocean acidification (OA). Despite the high interest and increased pace of OA research to understand the effects of OA on marine organisms, many ecologically important organisms remain unstudied. Calcidiscus is a heavily calcified coccolithophore genus that is widespread and genetically and morphologically diverse. It contributes substantially to global calcium carbonate production, organic carbon production, oceanic carbon burial, and ocean-atmosphere CO2 exchange. Despite the importance of this genus, relatively little work has examined its responses to OA. We examined changes in growth, morphology, and carbon allocation in multiple strains of Calcidiscus leptoporus in response to ocean acidification. We also, for the first time, examined the OA response of Calcidiscus quadriperforatus, a larger and more heavily calcified Calcidiscus congener. All Calcidiscus coccolithophores responded negatively to OA with impaired coccolith morphology and a decreased ratio of particulate inorganic to organic carbon (PIC:POC). However, strains responded variably; C. quadriperforatus showed the most sensitivity, while the most lightly calcified strain of C. leptoporus showed little response to OA. Our findings suggest that calcium carbonate production relative to organic carbon production by Calcidiscus coccolithophores may decrease in future oceans and that Calcidiscus distributions may shift if more resilient strains and species become dominant in assemblages. This study demonstrates that variable responses to OA may be strain or species specific in a way that is closely linked to physiological traits, such as cellular calcite quota.
format Dataset
author Diner, Rachel E
Benner, Ina
Passow, Uta
Komada, Tomoko
Carpenter, E J
Stillman, Jonathon H
author_facet Diner, Rachel E
Benner, Ina
Passow, Uta
Komada, Tomoko
Carpenter, E J
Stillman, Jonathon H
author_sort Diner, Rachel E
title Negative effects of ocean acidification on calcification vary within the coccolithophore genus Calcidiscus
title_short Negative effects of ocean acidification on calcification vary within the coccolithophore genus Calcidiscus
title_full Negative effects of ocean acidification on calcification vary within the coccolithophore genus Calcidiscus
title_fullStr Negative effects of ocean acidification on calcification vary within the coccolithophore genus Calcidiscus
title_full_unstemmed Negative effects of ocean acidification on calcification vary within the coccolithophore genus Calcidiscus
title_sort negative effects of ocean acidification on calcification vary within the coccolithophore genus calcidiscus
publisher PANGAEA
publishDate 2015
url https://doi.pangaea.de/10.1594/PANGAEA.849339
https://doi.org/10.1594/PANGAEA.849339
genre Ocean acidification
genre_facet Ocean acidification
op_source Supplement to: Diner, Rachel E; Benner, Ina; Passow, Uta; Komada, Tomoko; Carpenter, E J; Stillman, Jonathon H (2015): Negative effects of ocean acidification on calcification vary within the coccolithophore genus Calcidiscus. Marine Biology, 162(6), 1287-1305, https://doi.org/10.1007/s00227-015-2669-x
op_relation Gattuso, Jean-Pierre; Epitalon, Jean-Marie; Lavigne, Héloïse (2015): seacarb: seawater carbonate chemistry with R. R package version 3.0.8. https://cran.r-project.org/package=seacarb
https://doi.pangaea.de/10.1594/PANGAEA.849339
https://doi.org/10.1594/PANGAEA.849339
op_rights CC-BY-3.0: Creative Commons Attribution 3.0 Unported
Access constraints: unrestricted
info:eu-repo/semantics/openAccess
op_rightsnorm CC-BY
op_doi https://doi.org/10.1594/PANGAEA.849339
https://doi.org/10.1007/s00227-015-2669-x
_version_ 1766156670971412480