Detection of a variable intracellular acid-labile carbon pool in Thalassiosira weissflogii (Heterokontophyta) and Emiliania huxleyi (Haptophyta) in response to changes in the seawater carbon system

Accumulation of an intracellular pool of carbon (C(i) pool) is one strategy by which marine algae overcome the low abundance of dissolved CO2 (CO2 (aq) ) in modern seawater. To identify the environmental conditions under which algae accumulate an acid-labile C(i) pool, we applied a (14) C pulse-chas...

Full description

Bibliographic Details
Main Authors: Isensee, Kirsten, Erez, Jonathan, Stoll, Heather M
Format: Dataset
Language:English
Published: PANGAEA 2014
Subjects:
pH
Online Access:https://doi.pangaea.de/10.1594/PANGAEA.836733
https://doi.org/10.1594/PANGAEA.836733
id ftpangaea:oai:pangaea.de:doi:10.1594/PANGAEA.836733
record_format openpolar
spelling ftpangaea:oai:pangaea.de:doi:10.1594/PANGAEA.836733 2023-05-15T17:52:11+02:00 Detection of a variable intracellular acid-labile carbon pool in Thalassiosira weissflogii (Heterokontophyta) and Emiliania huxleyi (Haptophyta) in response to changes in the seawater carbon system Isensee, Kirsten Erez, Jonathan Stoll, Heather M 2014-10-15 text/tab-separated-values, 7443 data points https://doi.pangaea.de/10.1594/PANGAEA.836733 https://doi.org/10.1594/PANGAEA.836733 en eng PANGAEA Lavigne, Héloïse; Epitalon, Jean-Marie; Gattuso, Jean-Pierre (2014): seacarb: seawater carbonate chemistry with R. R package version 3.0. https://cran.r-project.org/package=seacarb https://doi.pangaea.de/10.1594/PANGAEA.836733 https://doi.org/10.1594/PANGAEA.836733 CC-BY-3.0: Creative Commons Attribution 3.0 Unported Access constraints: unrestricted info:eu-repo/semantics/openAccess CC-BY Supplement to: Isensee, Kirsten; Erez, Jonathan; Stoll, Heather M (2014): Detection of a variable intracellular acid-labile carbon pool in Thalassiosira weissflogii(Heterokontophyta) and Emiliania huxleyi (Haptophyta) in response to changes in the seawater carbon system. Physiologia Plantarum, 150(2), 321-338, https://doi.org/10.1111/ppl.12096 Alkalinity total Aragonite saturation state Bicarbonate ion Biomass/Abundance/Elemental composition Bottles or small containers/Aquaria (<20 L) Calcite saturation state Calculated Calculated using CO2SYS Calculated using seacarb after Nisumaa et al. (2010) Carbon inorganic dissolved intracellular pool per cell standard deviation Carbon-14 organic Carbon-14 incorporation per cell Carbonate ion Carbonate system computation flag Carbon dioxide Carbon dioxide/Bicarbonate uptake ratio Carbon incorporation rate per cell Cell biovolume Cell density Chlorophyll a per cell Chromista Emiliania huxleyi Figure Fugacity of carbon dioxide (water) at sea surface temperature (wet air) Haptophyta Laboratory experiment Laboratory strains Not applicable OA-ICC Ocean Acidification International Coordination Centre Ochrophyta Other metabolic rates Partial pressure of carbon dioxide (water) at sea surface temperature (wet air) Pelagos pH Phytoplankton Dataset 2014 ftpangaea https://doi.org/10.1594/PANGAEA.836733 https://doi.org/10.1111/ppl.12096 2023-01-20T09:03:59Z Accumulation of an intracellular pool of carbon (C(i) pool) is one strategy by which marine algae overcome the low abundance of dissolved CO2 (CO2 (aq) ) in modern seawater. To identify the environmental conditions under which algae accumulate an acid-labile C(i) pool, we applied a (14) C pulse-chase method, used originally in dinoflagellates, to two new classes of algae, coccolithophorids and diatoms. This method measures the carbon accumulation inside the cells without altering the medium carbon chemistry or culture cell density. We found that the diatom Thalassiosira weissflogii [(Grunow) G. Fryxell & Hasle] and a calcifying strain of the coccolithophorid Emiliania huxleyi [(Lohmann) W. W. Hay & H. P. Mohler] develop significant acid-labile C(i) pools. C(i) pools are measureable in cells cultured in media with 2-30 µmol/l CO2 (aq), corresponding to a medium pH of 8.6-7.9. The absolute C(i) pool was greater for the larger celled diatoms. For both algal classes, the C(i) pool became a negligible contributor to photosynthesis once CO2 (aq) exceeded 30 µmol/l. Combining the (14) C pulse-chase method and (14) C disequilibrium method enabled us to assess whether E. huxleyi and T. weissflogii exhibited thresholds for foregoing accumulation of DIC or reduced the reliance on bicarbonate uptake with increasing CO2 (aq) . We showed that the C(i) pool decreases with higher CO2 :HCO3 (-) uptake rates. Dataset Ocean acidification PANGAEA - Data Publisher for Earth & Environmental Science Fryxell ENVELOPE(163.183,163.183,-77.617,-77.617)
institution Open Polar
collection PANGAEA - Data Publisher for Earth & Environmental Science
op_collection_id ftpangaea
language English
topic Alkalinity
total
Aragonite saturation state
Bicarbonate ion
Biomass/Abundance/Elemental composition
Bottles or small containers/Aquaria (<20 L)
Calcite saturation state
Calculated
Calculated using CO2SYS
Calculated using seacarb after Nisumaa et al. (2010)
Carbon
inorganic
dissolved
intracellular pool per cell
standard deviation
Carbon-14
organic
Carbon-14 incorporation per cell
Carbonate ion
Carbonate system computation flag
Carbon dioxide
Carbon dioxide/Bicarbonate uptake ratio
Carbon incorporation rate per cell
Cell biovolume
Cell density
Chlorophyll a per cell
Chromista
Emiliania huxleyi
Figure
Fugacity of carbon dioxide (water) at sea surface temperature (wet air)
Haptophyta
Laboratory experiment
Laboratory strains
Not applicable
OA-ICC
Ocean Acidification International Coordination Centre
Ochrophyta
Other metabolic rates
Partial pressure of carbon dioxide (water) at sea surface temperature (wet air)
Pelagos
pH
Phytoplankton
spellingShingle Alkalinity
total
Aragonite saturation state
Bicarbonate ion
Biomass/Abundance/Elemental composition
Bottles or small containers/Aquaria (<20 L)
Calcite saturation state
Calculated
Calculated using CO2SYS
Calculated using seacarb after Nisumaa et al. (2010)
Carbon
inorganic
dissolved
intracellular pool per cell
standard deviation
Carbon-14
organic
Carbon-14 incorporation per cell
Carbonate ion
Carbonate system computation flag
Carbon dioxide
Carbon dioxide/Bicarbonate uptake ratio
Carbon incorporation rate per cell
Cell biovolume
Cell density
Chlorophyll a per cell
Chromista
Emiliania huxleyi
Figure
Fugacity of carbon dioxide (water) at sea surface temperature (wet air)
Haptophyta
Laboratory experiment
Laboratory strains
Not applicable
OA-ICC
Ocean Acidification International Coordination Centre
Ochrophyta
Other metabolic rates
Partial pressure of carbon dioxide (water) at sea surface temperature (wet air)
Pelagos
pH
Phytoplankton
Isensee, Kirsten
Erez, Jonathan
Stoll, Heather M
Detection of a variable intracellular acid-labile carbon pool in Thalassiosira weissflogii (Heterokontophyta) and Emiliania huxleyi (Haptophyta) in response to changes in the seawater carbon system
topic_facet Alkalinity
total
Aragonite saturation state
Bicarbonate ion
Biomass/Abundance/Elemental composition
Bottles or small containers/Aquaria (<20 L)
Calcite saturation state
Calculated
Calculated using CO2SYS
Calculated using seacarb after Nisumaa et al. (2010)
Carbon
inorganic
dissolved
intracellular pool per cell
standard deviation
Carbon-14
organic
Carbon-14 incorporation per cell
Carbonate ion
Carbonate system computation flag
Carbon dioxide
Carbon dioxide/Bicarbonate uptake ratio
Carbon incorporation rate per cell
Cell biovolume
Cell density
Chlorophyll a per cell
Chromista
Emiliania huxleyi
Figure
Fugacity of carbon dioxide (water) at sea surface temperature (wet air)
Haptophyta
Laboratory experiment
Laboratory strains
Not applicable
OA-ICC
Ocean Acidification International Coordination Centre
Ochrophyta
Other metabolic rates
Partial pressure of carbon dioxide (water) at sea surface temperature (wet air)
Pelagos
pH
Phytoplankton
description Accumulation of an intracellular pool of carbon (C(i) pool) is one strategy by which marine algae overcome the low abundance of dissolved CO2 (CO2 (aq) ) in modern seawater. To identify the environmental conditions under which algae accumulate an acid-labile C(i) pool, we applied a (14) C pulse-chase method, used originally in dinoflagellates, to two new classes of algae, coccolithophorids and diatoms. This method measures the carbon accumulation inside the cells without altering the medium carbon chemistry or culture cell density. We found that the diatom Thalassiosira weissflogii [(Grunow) G. Fryxell & Hasle] and a calcifying strain of the coccolithophorid Emiliania huxleyi [(Lohmann) W. W. Hay & H. P. Mohler] develop significant acid-labile C(i) pools. C(i) pools are measureable in cells cultured in media with 2-30 µmol/l CO2 (aq), corresponding to a medium pH of 8.6-7.9. The absolute C(i) pool was greater for the larger celled diatoms. For both algal classes, the C(i) pool became a negligible contributor to photosynthesis once CO2 (aq) exceeded 30 µmol/l. Combining the (14) C pulse-chase method and (14) C disequilibrium method enabled us to assess whether E. huxleyi and T. weissflogii exhibited thresholds for foregoing accumulation of DIC or reduced the reliance on bicarbonate uptake with increasing CO2 (aq) . We showed that the C(i) pool decreases with higher CO2 :HCO3 (-) uptake rates.
format Dataset
author Isensee, Kirsten
Erez, Jonathan
Stoll, Heather M
author_facet Isensee, Kirsten
Erez, Jonathan
Stoll, Heather M
author_sort Isensee, Kirsten
title Detection of a variable intracellular acid-labile carbon pool in Thalassiosira weissflogii (Heterokontophyta) and Emiliania huxleyi (Haptophyta) in response to changes in the seawater carbon system
title_short Detection of a variable intracellular acid-labile carbon pool in Thalassiosira weissflogii (Heterokontophyta) and Emiliania huxleyi (Haptophyta) in response to changes in the seawater carbon system
title_full Detection of a variable intracellular acid-labile carbon pool in Thalassiosira weissflogii (Heterokontophyta) and Emiliania huxleyi (Haptophyta) in response to changes in the seawater carbon system
title_fullStr Detection of a variable intracellular acid-labile carbon pool in Thalassiosira weissflogii (Heterokontophyta) and Emiliania huxleyi (Haptophyta) in response to changes in the seawater carbon system
title_full_unstemmed Detection of a variable intracellular acid-labile carbon pool in Thalassiosira weissflogii (Heterokontophyta) and Emiliania huxleyi (Haptophyta) in response to changes in the seawater carbon system
title_sort detection of a variable intracellular acid-labile carbon pool in thalassiosira weissflogii (heterokontophyta) and emiliania huxleyi (haptophyta) in response to changes in the seawater carbon system
publisher PANGAEA
publishDate 2014
url https://doi.pangaea.de/10.1594/PANGAEA.836733
https://doi.org/10.1594/PANGAEA.836733
long_lat ENVELOPE(163.183,163.183,-77.617,-77.617)
geographic Fryxell
geographic_facet Fryxell
genre Ocean acidification
genre_facet Ocean acidification
op_source Supplement to: Isensee, Kirsten; Erez, Jonathan; Stoll, Heather M (2014): Detection of a variable intracellular acid-labile carbon pool in Thalassiosira weissflogii(Heterokontophyta) and Emiliania huxleyi (Haptophyta) in response to changes in the seawater carbon system. Physiologia Plantarum, 150(2), 321-338, https://doi.org/10.1111/ppl.12096
op_relation Lavigne, Héloïse; Epitalon, Jean-Marie; Gattuso, Jean-Pierre (2014): seacarb: seawater carbonate chemistry with R. R package version 3.0. https://cran.r-project.org/package=seacarb
https://doi.pangaea.de/10.1594/PANGAEA.836733
https://doi.org/10.1594/PANGAEA.836733
op_rights CC-BY-3.0: Creative Commons Attribution 3.0 Unported
Access constraints: unrestricted
info:eu-repo/semantics/openAccess
op_rightsnorm CC-BY
op_doi https://doi.org/10.1594/PANGAEA.836733
https://doi.org/10.1111/ppl.12096
_version_ 1766159563650760704