Seawater carbonate chemistry, cell numbers and growth rate during experiments with dinoflagellates, 2007
The effects of dissolved inorganic carbon (DIC) on the growth of 3 red-tide dinoflagellates (Ceratium lineatum, Heterocapsa triquetra and Prorocentrum minimum) were studied at pH 8.0 and at higher pH levels, depending upon the pH tolerance of the individual species. The higher pH levels chosen for e...
Main Authors: | , , |
---|---|
Format: | Dataset |
Language: | English |
Published: |
PANGAEA
2007
|
Subjects: | |
Online Access: | https://doi.pangaea.de/10.1594/PANGAEA.819627 https://doi.org/10.1594/PANGAEA.819627 |
id |
ftpangaea:oai:pangaea.de:doi:10.1594/PANGAEA.819627 |
---|---|
record_format |
openpolar |
spelling |
ftpangaea:oai:pangaea.de:doi:10.1594/PANGAEA.819627 2023-05-15T17:51:05+02:00 Seawater carbonate chemistry, cell numbers and growth rate during experiments with dinoflagellates, 2007 Hansen, Per Juel Lundholm, Nina Rost, Björn 2007-09-23 application/zip, 2 datasets https://doi.pangaea.de/10.1594/PANGAEA.819627 https://doi.org/10.1594/PANGAEA.819627 en eng PANGAEA https://doi.pangaea.de/10.1594/PANGAEA.819627 https://doi.org/10.1594/PANGAEA.819627 CC-BY-3.0: Creative Commons Attribution 3.0 Unported Access constraints: unrestricted info:eu-repo/semantics/openAccess CC-BY Supplement to: Hansen, Per Juel; Lundholm, Nina; Rost, Björn (2007): Growth limitation in marine red-tide dinoflagellates: effects of pH versus inorganic carbon availability. Marine Ecology Progress Series, 334, 63-71, https://doi.org/10.3354/meps334063 Biomass/Abundance/Elemental composition Bottles or small containers/Aquaria (<20 L) Ceratium lineatum Chromista EPOCA EUR-OCEANS European network of excellence for Ocean Ecosystems Analysis European Project on Ocean Acidification EXP Experiment Growth/Morphology Hansen_etal_07/F1 Hansen_etal_07/F2 Laboratory experiment Laboratory strains Myzozoa Not applicable OA-ICC Ocean Acidification International Coordination Centre Pelagos Phytoplankton Prorocentrum minimum Single species Dataset 2007 ftpangaea https://doi.org/10.1594/PANGAEA.819627 https://doi.org/10.3354/meps334063 2023-01-20T07:33:08Z The effects of dissolved inorganic carbon (DIC) on the growth of 3 red-tide dinoflagellates (Ceratium lineatum, Heterocapsa triquetra and Prorocentrum minimum) were studied at pH 8.0 and at higher pH levels, depending upon the pH tolerance of the individual species. The higher pH levels chosen for experiments were 8.55 for C. lineatum and 9.2 for the other 2 species. At pH 8.0, which approximates the pH found in the open sea, the maximum growth in all species was maintained until the total DIC concentration was reduced below ~0.4 and 0.2 mM for C. lineatum and the other 2 species, respectively. Growth compensation points (concentration of inorganic carbon needed for maintenance of cells) were reached at ~0.18 and 0.05 mM DIC for C. lineatum and the other 2 species, respectively. At higher pH levels, maximum growth rates were lower compared to growth at pH 8, even at very high DIC concentrations, indicating a direct pH effect on growth. Moreover, the concentration of bio-available inorganic carbon (CO2 + HCO3-) required for maintenance as well as the half-saturation constants were increased considerably at high pH compared to pH 8.0. Experiments with pH-drift were carried out at initial concentrations of 2.4 and 1.2 mM DIC to test whether pH or DIC was the main limiting factor at a natural range of DIC. Independent of the initial DIC concentrations, growth rates were similar in both incubations until pH had increased considerably. The results of this study demonstrated that growth of the 3 species was mainly limited by pH, while inorganic carbon limitation played a minor role only at very high pH levels and low initial DIC concentrations. Dataset Ocean acidification PANGAEA - Data Publisher for Earth & Environmental Science |
institution |
Open Polar |
collection |
PANGAEA - Data Publisher for Earth & Environmental Science |
op_collection_id |
ftpangaea |
language |
English |
topic |
Biomass/Abundance/Elemental composition Bottles or small containers/Aquaria (<20 L) Ceratium lineatum Chromista EPOCA EUR-OCEANS European network of excellence for Ocean Ecosystems Analysis European Project on Ocean Acidification EXP Experiment Growth/Morphology Hansen_etal_07/F1 Hansen_etal_07/F2 Laboratory experiment Laboratory strains Myzozoa Not applicable OA-ICC Ocean Acidification International Coordination Centre Pelagos Phytoplankton Prorocentrum minimum Single species |
spellingShingle |
Biomass/Abundance/Elemental composition Bottles or small containers/Aquaria (<20 L) Ceratium lineatum Chromista EPOCA EUR-OCEANS European network of excellence for Ocean Ecosystems Analysis European Project on Ocean Acidification EXP Experiment Growth/Morphology Hansen_etal_07/F1 Hansen_etal_07/F2 Laboratory experiment Laboratory strains Myzozoa Not applicable OA-ICC Ocean Acidification International Coordination Centre Pelagos Phytoplankton Prorocentrum minimum Single species Hansen, Per Juel Lundholm, Nina Rost, Björn Seawater carbonate chemistry, cell numbers and growth rate during experiments with dinoflagellates, 2007 |
topic_facet |
Biomass/Abundance/Elemental composition Bottles or small containers/Aquaria (<20 L) Ceratium lineatum Chromista EPOCA EUR-OCEANS European network of excellence for Ocean Ecosystems Analysis European Project on Ocean Acidification EXP Experiment Growth/Morphology Hansen_etal_07/F1 Hansen_etal_07/F2 Laboratory experiment Laboratory strains Myzozoa Not applicable OA-ICC Ocean Acidification International Coordination Centre Pelagos Phytoplankton Prorocentrum minimum Single species |
description |
The effects of dissolved inorganic carbon (DIC) on the growth of 3 red-tide dinoflagellates (Ceratium lineatum, Heterocapsa triquetra and Prorocentrum minimum) were studied at pH 8.0 and at higher pH levels, depending upon the pH tolerance of the individual species. The higher pH levels chosen for experiments were 8.55 for C. lineatum and 9.2 for the other 2 species. At pH 8.0, which approximates the pH found in the open sea, the maximum growth in all species was maintained until the total DIC concentration was reduced below ~0.4 and 0.2 mM for C. lineatum and the other 2 species, respectively. Growth compensation points (concentration of inorganic carbon needed for maintenance of cells) were reached at ~0.18 and 0.05 mM DIC for C. lineatum and the other 2 species, respectively. At higher pH levels, maximum growth rates were lower compared to growth at pH 8, even at very high DIC concentrations, indicating a direct pH effect on growth. Moreover, the concentration of bio-available inorganic carbon (CO2 + HCO3-) required for maintenance as well as the half-saturation constants were increased considerably at high pH compared to pH 8.0. Experiments with pH-drift were carried out at initial concentrations of 2.4 and 1.2 mM DIC to test whether pH or DIC was the main limiting factor at a natural range of DIC. Independent of the initial DIC concentrations, growth rates were similar in both incubations until pH had increased considerably. The results of this study demonstrated that growth of the 3 species was mainly limited by pH, while inorganic carbon limitation played a minor role only at very high pH levels and low initial DIC concentrations. |
format |
Dataset |
author |
Hansen, Per Juel Lundholm, Nina Rost, Björn |
author_facet |
Hansen, Per Juel Lundholm, Nina Rost, Björn |
author_sort |
Hansen, Per Juel |
title |
Seawater carbonate chemistry, cell numbers and growth rate during experiments with dinoflagellates, 2007 |
title_short |
Seawater carbonate chemistry, cell numbers and growth rate during experiments with dinoflagellates, 2007 |
title_full |
Seawater carbonate chemistry, cell numbers and growth rate during experiments with dinoflagellates, 2007 |
title_fullStr |
Seawater carbonate chemistry, cell numbers and growth rate during experiments with dinoflagellates, 2007 |
title_full_unstemmed |
Seawater carbonate chemistry, cell numbers and growth rate during experiments with dinoflagellates, 2007 |
title_sort |
seawater carbonate chemistry, cell numbers and growth rate during experiments with dinoflagellates, 2007 |
publisher |
PANGAEA |
publishDate |
2007 |
url |
https://doi.pangaea.de/10.1594/PANGAEA.819627 https://doi.org/10.1594/PANGAEA.819627 |
genre |
Ocean acidification |
genre_facet |
Ocean acidification |
op_source |
Supplement to: Hansen, Per Juel; Lundholm, Nina; Rost, Björn (2007): Growth limitation in marine red-tide dinoflagellates: effects of pH versus inorganic carbon availability. Marine Ecology Progress Series, 334, 63-71, https://doi.org/10.3354/meps334063 |
op_relation |
https://doi.pangaea.de/10.1594/PANGAEA.819627 https://doi.org/10.1594/PANGAEA.819627 |
op_rights |
CC-BY-3.0: Creative Commons Attribution 3.0 Unported Access constraints: unrestricted info:eu-repo/semantics/openAccess |
op_rightsnorm |
CC-BY |
op_doi |
https://doi.org/10.1594/PANGAEA.819627 https://doi.org/10.3354/meps334063 |
_version_ |
1766158100495073280 |