(Table 3) Growth rates of the juvenile polychaete Scolelepis squamata obtained from ice cores under varying conditions

In spring, Arctic coastal fast ice is inhabited by high densities of sea ice algae and, among other fauna, juveniles of benthic polychaetes. This paper investigates the hypothesis that growth rates of juveniles of the common sympagic polychaete, Scolelepis squamata (Polychaeta: Spionidae), are signi...

Full description

Bibliographic Details
Main Authors: McConnell, Brenna, Gradinger, Rolf, Iken, Katrin, Bluhm, Bodil Annikki
Format: Dataset
Language:English
Published: PANGAEA 2012
Subjects:
USA
FX
IPY
Online Access:https://doi.pangaea.de/10.1594/PANGAEA.816073
https://doi.org/10.1594/PANGAEA.816073
Description
Summary:In spring, Arctic coastal fast ice is inhabited by high densities of sea ice algae and, among other fauna, juveniles of benthic polychaetes. This paper investigates the hypothesis that growth rates of juveniles of the common sympagic polychaete, Scolelepis squamata (Polychaeta: Spionidae), are significantly faster at sea ice algal bloom concentrations compared to concurrent phytoplankton concentrations. Juvenile S. squamata from fast ice off Barrow, Alaska, were fed with different algal concentrations at 0 and 5 °C, simulating ambient high sea ice algal concentrations, concurrent low phytoplankton concentrations, and an intermediate concentration. Growth rates, calculated using a simple linear regression equation, were significantly higher (up to 115 times) at the highest algal concentration compared to the lowest. At the highest algal concentration, juveniles grew faster at 5 °C compared to those feeding at 0 °C with a Q10 of 2.0. We conclude that highly concentrated sea ice algae can sustain faster growth rates of polychaete juveniles compared to the less dense spring phytoplankton concentrations. The earlier melt of Arctic sea ice predicted with climate change might cause a mismatch between occurrence of polychaete juveniles and food availability in the near future. Our data indicate that this reduction in food availability might counteract any faster growth of a pelagic juvenile stage based on forecasted increased water temperatures.