Seawater carbonate chemistry and microbial polysaccharide degradation during experiments with phytoplankton Emiliania huxleyi (strain PML B92/11) and natural bacteria community, 2010

With the accumulation of anthropogenic carbon dioxide (CO2), a proceeding decline in seawater pH has been induced that is referred to as ocean acidification. The ocean's capacity for CO2 storage is strongly affected by biological processes, whose feedback potential is difficult to evaluate. The...

Full description

Bibliographic Details
Main Authors: Piontek, Judith, Lunau, Mirko, Händel, Nicole, Borchard, Corinna, Wurst, Mascha, Engel, Anja
Format: Dataset
Language:English
Published: PANGAEA 2010
Subjects:
pH
Online Access:https://doi.pangaea.de/10.1594/PANGAEA.775815
https://doi.org/10.1594/PANGAEA.775815
Description
Summary:With the accumulation of anthropogenic carbon dioxide (CO2), a proceeding decline in seawater pH has been induced that is referred to as ocean acidification. The ocean's capacity for CO2 storage is strongly affected by biological processes, whose feedback potential is difficult to evaluate. The main source of CO2 in the ocean is the decomposition and subsequent respiration of organic molecules by heterotrophic bacteria. However, very little is known about potential effects of ocean acidification on bacterial degradation activity. This study reveals that the degradation of polysaccharides, a major component of marine organic matter, by bacterial extracellular enzymes was significantly accelerated during experimental simulation of ocean acidification. Results were obtained from pH perturbation experiments, where rates of extracellular alpha- and beta-glucosidase were measured and the loss of neutral and acidic sugars from phytoplankton-derived polysaccharides was determined. Our study suggests that a faster bacterial turnover of polysaccharides at lowered ocean pH has the potential to reduce carbon export and to enhance the respiratory CO2 production in the future ocean.