Table 1: Station data for the entire survey, including coordinates and description of BPBASE

During GANOVEX VI new gravity data were collected along an east-west profile in North Victoria Land south of the Drygalski Ice Tongue, extending 150 km across the Transantarctic Mountains, and comprising 21 data points. Thirty five additional data points were collected over a small area near Brimsto...

Full description

Bibliographic Details
Main Authors: Redfield, Tim, Behrendt, John, Damaske, Detlef, Delisle, Georg, Möller, Dieter, Sievers, Joachim
Format: Dataset
Language:English
Published: PANGAEA 2011
Subjects:
Online Access:https://doi.pangaea.de/10.1594/PANGAEA.763366
https://doi.org/10.1594/PANGAEA.763366
Description
Summary:During GANOVEX VI new gravity data were collected along an east-west profile in North Victoria Land south of the Drygalski Ice Tongue, extending 150 km across the Transantarctic Mountains, and comprising 21 data points. Thirty five additional data points were collected over a small area near Brimstone Peak, near the western end of the regional profile. The survey south of the Drygalski has been connected to northern gravity data (GANOVEX V) by a survey line of 12 points. All data have been terrain corrected, and are further constrained by satellite elevation (GPS) and radar ice-thickness measurements. A pronounced regional Bouguer gravity gradient decreasing to the west by approximately 3 mgal/km is superimposed over a coast-parallel belt of granitoid basement rock. West of this belt the local gravity fields become mote variable. Over Beta Peak (Ferrar dolerite) a 50 mgal spike is obser- ved. Within this area, the Ferrar sills are exposed at the surface. West of Brimstone Peak (Ferrar/Kirk patrick sequences), a smooth regional gradient appears to reassert itself. We interpret the initial gradient east (oceanward) of the break-in-slope to be representative of the crust/mantle boundary within the study area. We interpret the initial break-in-slope and the apparent flattening of the regional gradient to be an effect of the N-S trending zone of dense Ferrar sills and associated deep crusttil fractionate replacing less dense basement. We attribute the variability of the local field to be the product of sub-glacial density contrasts that cannot be removed. The regional gravity gradient of the profile is steeper than that observed to the north (Mt. Melbourne quadrangle) and shallower than that reported to the south (McMurdo Sound). The absolute values of the coastal points of origin south of the Drygalski and within the Mt. Melbourne quadrangle differ by 60 to 100 mgal. In addition, topographic relief within the regional transect area is subdued relative to the Transantarctic Mountains to the north and south. We ...