Micro- and picoplankton in waters of the Saint Paul Island, Pribilof Islands, Bering Sea

On the basis of materials collected in June-August 1994 characteristic data on microplankton were gathered in three biotopes of the eastern shelf of the Bering Sea: open shelf (coastal zone), the harbor, and the salt lagoon of Saint Paul Island (Pribiof Islands). The following parameters of micropla...

Full description

Bibliographic Details
Main Authors: Kopylov, A I, Kosolapov, D B, Flint, Mikhail V
Format: Dataset
Language:English
Published: PANGAEA 2001
Subjects:
WS
Online Access:https://doi.pangaea.de/10.1594/PANGAEA.761243
https://doi.org/10.1594/PANGAEA.761243
Description
Summary:On the basis of materials collected in June-August 1994 characteristic data on microplankton were gathered in three biotopes of the eastern shelf of the Bering Sea: open shelf (coastal zone), the harbor, and the salt lagoon of Saint Paul Island (Pribiof Islands). The following parameters of microplanktonic communities were analyzed: abundance, biomass, and production of autotrophic picoplankton (picoalgae and cyanobacteria); abundance, biomass, growth rate constant, and production of bacterioplankton; role of filiform bacteria in bacterioplankton; species composition of heterotrophic flagellates and ciliates, their abundance, and biomass. Growth rates and consumption rates of picoplankton and bacterioplankton by heterotrophic nano- and microplankton were estimated in the experiments using the dilution method. Temporal dynamics of all structural and functional parameters of microplankton were analyzed. The minor role of autotrophic picoplankton and significant role of bacterioplankton as well as heterotrophic nano- and microplankton in planktonic communities of studied biotopes during summer months was shown. During certain periods, bacterial biomass was as high as 50-65% of phytoplankton biomass, and production of bacteria was as high as 20-40% of primary production. In the middle of the season biomass of nano- and microheterotrophic organisms in different biotopes exceeded biomass of mesozooplankton 2-10 times. Average consumption of bacterial production by nano- and microplankton during the period of observations was 85-94%.