Stable carbon and oxygen isotope record of Neogloboquadrina pachyderma and Cibicides lobatulus from the southwestern Greenland Sea
A core transect across the southwestern Greenland Sea reveals coeval events of extremely negative planktic and benthic delta13C excursions between 40 and 87 ka. The most pronounced event, event 1, began at peak Dansgaard-Oeschger stadial 22 (85 ka) with a duration of 18 k.y. During this episode, inc...
Main Authors: | , , , |
---|---|
Format: | Other/Unknown Material |
Language: | English |
Published: |
PANGAEA
2005
|
Subjects: | |
Online Access: | https://doi.pangaea.de/10.1594/PANGAEA.738187 https://doi.org/10.1594/PANGAEA.738187 |
Summary: | A core transect across the southwestern Greenland Sea reveals coeval events of extremely negative planktic and benthic delta13C excursions between 40 and 87 ka. The most pronounced event, event 1, began at peak Dansgaard-Oeschger stadial 22 (85 ka) with a duration of 18 k.y. During this episode, incursions of Atlantic Intermediate Water caused a bottom-water warming of up to 8 °C. The amplitude, timing, and geographic pattern of the delta13C events suggest that this bottom-water warming triggered clathrate instability along the East Greenland slope and a methane-induced depletion of delta13CDIC (DIC- dissolved inorganic carbon). Since delta13C event 1 matches a major peak in atmospheric CH4 concentration, this clathrate destabilization may have contributed to the rise in atmospheric CH4 and thus to climate warming over marine isotope stage 5.1. |
---|