Chemical analysis of ODP Hole 104-642E

During Ocean Drilling Program Leg 104 a 900-m-thick sequence of volcanic rocks was drilled at Hole 642E on the Vøring Plateau, Norwegian Sea. This sequence erupted in two series (upper and lower series) upon continental basement. The upper series corresponds to the seaward-dipping seismic reflectors...

Full description

Bibliographic Details
Main Authors: Viereck-Götte, Lothar, Hertogen, Jan GH, Parson, Lindsey M, Morton, Andrew C, Love, Dave, Gibson, Ian L
Format: Other/Unknown Material
Language:English
Published: PANGAEA 1989
Subjects:
ODP
Online Access:https://doi.pangaea.de/10.1594/PANGAEA.736975
https://doi.org/10.1594/PANGAEA.736975
Description
Summary:During Ocean Drilling Program Leg 104 a 900-m-thick sequence of volcanic rocks was drilled at Hole 642E on the Vøring Plateau, Norwegian Sea. This sequence erupted in two series (upper and lower series) upon continental basement. The upper series corresponds to the seaward-dipping seismic reflectors and comprises a succession of about 122 flows of transitional oceanic tholeiite composition. They have been subdivided into several formations consisting of flows related to each other by crystal fractionation processes, magma mixing, or both. Major- and trace-element chemistry indicates affinities to Tertiary plateau lavas of northeast Greenland and to Holocene lavas from shallow transitional segments of the Mid-Atlantic Ridge, such as Reykjanes Ridge. The tholeiitic magmas have been derived from a slightly LREE-depleted mantle source. Two tholeiitic dikes that intruded the lower series derive from an extremely depleted mantle source. Interlayered volcaniclastic sediments are dominantly ferrobasaltic and more differentiated. They appear to come from a LREE-enriched mantle source, and may have been erupted in close vicinity of the Vøring Plateau during hydroclastic eruptions. The two tholeiitic dikes that intruded the lower series as well as some flows at the base of the upper series show evidence of assimilation of continental upper crustal material.