Distribution of planktonic foraminifera in DSDP Hole 31-296 (Table III)

Late Neogene planktonic foraminiferal biostratigraphy of DSDP Site 296, Leg 31, reveals this site as an ideal reference section for correlation of Blow's low-latitude zonation with the mid-latitude zonation for temperate faunal assemblages developed in this paper and earlier for DSDP Site 310,...

Full description

Bibliographic Details
Main Author: Keller, Gerta
Format: Dataset
Language:English
Published: PANGAEA 1979
Subjects:
Online Access:https://doi.pangaea.de/10.1594/PANGAEA.706057
https://doi.org/10.1594/PANGAEA.706057
Description
Summary:Late Neogene planktonic foraminiferal biostratigraphy of DSDP Site 296, Leg 31, reveals this site as an ideal reference section for correlation of Blow's low-latitude zonation with the mid-latitude zonation for temperate faunal assemblages developed in this paper and earlier for DSDP Site 310, Leg 31 (Keller). Abundance of temperate species of Globorotalia (G. inflata, G. puncticulata, G. crassaformis, G. conomiozea) permit correlation with the zonal subdivision developed at Site 310 based on these species. Evolutionary changes within the Globorotalia inflata group also appear to be consistent biostratigraphie markers in mid latitudes; a primitive variety of this species first appears at about 3.3-3.1 Ma, G. inflata praeinflata appears at about 2.6 Ma, and the modern form appears at about 2.2-2.1 Ma. Quantitative analyses of planktonic foraminifera at DSDP Site 296 reveal an inversely reciprocal frequency oscillation between species of Globorotalia and the Globigerina-Globigerinita group. Cool climatic periods are characterized by high frequencies in the Globigerina-Globigerinita group and low frequencies in the Globorotalia group, whereas warm intervals are marked by high frequencies in the Globorotalia group and low frequencies in the Globigerina-Globigerinita group. Five cool paleoclimatic events can be recognized between early Pliocene and late Pleistocene: 4.4 Ma, 3.2-3.1 Ma, 2.4-2.2 Ma, 1.2 Ma, and 0.7 Ma. These paleoclimatic/paleoceanographic events have also been recognized in planktonic foraminifera of the Central and Northeast Pacific DSDP Sites 310 and 173 and also correlate to cold events recognized in oxygen isotope measurements of DSDP Site 310 and in equatorial Pacific cores.