Research on dynamics of tundra ecosystems and their potential response to energy resource development. Progress report, May 1, 1978-April 30, 1979

The ecological effects (costs and benefits) of impacts that can be expected from the development and utilization of energy resources in the arctic. The impacts selected for study are: altered nutrient availability (nitrogen and phosphorus); altered patterns of soil water drainage; and vehicle tracks...

Full description

Bibliographic Details
Main Author: Miller, P.C.
Language:unknown
Published: 2020
Subjects:
Online Access:http://www.osti.gov/servlets/purl/5876832
https://www.osti.gov/biblio/5876832
https://doi.org/10.2172/5876832
Description
Summary:The ecological effects (costs and benefits) of impacts that can be expected from the development and utilization of energy resources in the arctic. The impacts selected for study are: altered nutrient availability (nitrogen and phosphorus); altered patterns of soil water drainage; and vehicle tracks. The general ecosystem characteristics chosen to provide integrative measures of the possible ecological effects include annual primary production and the relative aboveground growth of the different species or growth forms comprising the vegetation. Plant growth forms are defined by height, leaf longevity, position of the perennating bud, and rooting pattern. The growth forms and species selected are: erect deciduous shrubs (Betula nana, Vaccinium uliginosum, Salix pulchra); erect evergreen shrubs (Ledum palustre); prostrate evergreen shrub (Vaccinium vitis-idaea); tussock graminoid (Eriophorum vaginatum); rhizomatous graminoid (Carex bigelowii, Carex aquatilis, Eriophorum angustifolium); forb (Artemisia arctica); grass (Calamagrostis or Arctagrostis); cushion moss (Dicranum sp.); Sphagnum sp.; and Polytrichum commune. Progress is reported in field and laboratory studies. The main conclusion of the research is that species respond individually in terms of nutrient and total nonstructural carbohydrates accumulation to fertilization, and that the growth forms studied are not distinctive from each other on the basis of plant nutrition or growth. The explicit mechanism for integrating and guiding this research and for extrapolating the existing data base to make quantitative predictions of the effects of perturbations is a simulation model of arctic tundra vegetation and soil processes called ARTUS (Arctic Tundra Simulator). (JGB)