Microbial seasonality promotes soil respiratory carbon emission in natural ecosystems: A modeling study

Seasonality is a key feature of the biosphere and the seasonal dynamics of soil carbon (C) emissions represent a fundamental mechanism regulating the terrestrial–climate interaction. We applied a microbial explicit model—CLM-Microbe—to evaluate the impacts of microbial seasonality on soil C cycling...

Full description

Bibliographic Details
Published in:Global Change Biology
Main Authors: He, Liyuan, Lai, Chun‐Ta, Mayes, Melanie A., Murayama, Shohei, Xu, Xiaofeng
Language:unknown
Published: 2022
Subjects:
Online Access:http://www.osti.gov/servlets/purl/1787933
https://www.osti.gov/biblio/1787933
https://doi.org/10.1111/gcb.15627
id ftosti:oai:osti.gov:1787933
record_format openpolar
spelling ftosti:oai:osti.gov:1787933 2023-07-30T04:02:03+02:00 Microbial seasonality promotes soil respiratory carbon emission in natural ecosystems: A modeling study He, Liyuan Lai, Chun‐Ta Mayes, Melanie A. Murayama, Shohei Xu, Xiaofeng 2022-05-10 application/pdf http://www.osti.gov/servlets/purl/1787933 https://www.osti.gov/biblio/1787933 https://doi.org/10.1111/gcb.15627 unknown http://www.osti.gov/servlets/purl/1787933 https://www.osti.gov/biblio/1787933 https://doi.org/10.1111/gcb.15627 doi:10.1111/gcb.15627 59 BASIC BIOLOGICAL SCIENCES 2022 ftosti https://doi.org/10.1111/gcb.15627 2023-07-11T10:04:12Z Seasonality is a key feature of the biosphere and the seasonal dynamics of soil carbon (C) emissions represent a fundamental mechanism regulating the terrestrial–climate interaction. We applied a microbial explicit model—CLM-Microbe—to evaluate the impacts of microbial seasonality on soil C cycling in terrestrial ecosystems. Additionally, the CLM-Microbe model was validated in simulating belowground respiratory fluxes, that is, microbial respiration, root respiration, and soil respiration at the site level. On average, the CLM-Microbe model explained 72% (n = 19, p < 0.0001), 65% (n = 19, p < 0.0001), and 71% (n = 18, p < 0.0001) of the variation in microbial respiration, root respiration, and soil respiration, respectively. We then compared the model simulations of soil respiratory fluxes and soil organic C content in top 1 m between the CLM-Microbe model with (CLM-Microbe) and without (CLM-Microbe_wos) seasonal dynamics of soil microbial biomass in natural biomes. Removing soil microbial seasonality reduced model performance in simulating microbial respiration and soil respiration, but led to slight differences in simulating root respiration. Compared with the CLM-Microbe, the CLM-Microbe_wos underestimated the annual flux of microbial respiration by 0.6%–32% and annual flux of soil respiration by 0.4%–29% in natural biomes. Correspondingly, the CLM-Microbe_wos estimated higher soil organic C content in top 1 m (0.2%–7%) except for the sites in Arctic and boreal regions. Our findings suggest that soil microbial seasonality enhances soil respiratory C emissions, leading to a decline in SOC storage. An explicit representation of soil microbial seasonality represents a critical improvement for projecting soil C decomposition and reducing the uncertainties in global C cycle projection under the changing climate. Other/Unknown Material Arctic SciTec Connect (Office of Scientific and Technical Information - OSTI, U.S. Department of Energy) Arctic Global Change Biology 27 13 3035 3051
institution Open Polar
collection SciTec Connect (Office of Scientific and Technical Information - OSTI, U.S. Department of Energy)
op_collection_id ftosti
language unknown
topic 59 BASIC BIOLOGICAL SCIENCES
spellingShingle 59 BASIC BIOLOGICAL SCIENCES
He, Liyuan
Lai, Chun‐Ta
Mayes, Melanie A.
Murayama, Shohei
Xu, Xiaofeng
Microbial seasonality promotes soil respiratory carbon emission in natural ecosystems: A modeling study
topic_facet 59 BASIC BIOLOGICAL SCIENCES
description Seasonality is a key feature of the biosphere and the seasonal dynamics of soil carbon (C) emissions represent a fundamental mechanism regulating the terrestrial–climate interaction. We applied a microbial explicit model—CLM-Microbe—to evaluate the impacts of microbial seasonality on soil C cycling in terrestrial ecosystems. Additionally, the CLM-Microbe model was validated in simulating belowground respiratory fluxes, that is, microbial respiration, root respiration, and soil respiration at the site level. On average, the CLM-Microbe model explained 72% (n = 19, p < 0.0001), 65% (n = 19, p < 0.0001), and 71% (n = 18, p < 0.0001) of the variation in microbial respiration, root respiration, and soil respiration, respectively. We then compared the model simulations of soil respiratory fluxes and soil organic C content in top 1 m between the CLM-Microbe model with (CLM-Microbe) and without (CLM-Microbe_wos) seasonal dynamics of soil microbial biomass in natural biomes. Removing soil microbial seasonality reduced model performance in simulating microbial respiration and soil respiration, but led to slight differences in simulating root respiration. Compared with the CLM-Microbe, the CLM-Microbe_wos underestimated the annual flux of microbial respiration by 0.6%–32% and annual flux of soil respiration by 0.4%–29% in natural biomes. Correspondingly, the CLM-Microbe_wos estimated higher soil organic C content in top 1 m (0.2%–7%) except for the sites in Arctic and boreal regions. Our findings suggest that soil microbial seasonality enhances soil respiratory C emissions, leading to a decline in SOC storage. An explicit representation of soil microbial seasonality represents a critical improvement for projecting soil C decomposition and reducing the uncertainties in global C cycle projection under the changing climate.
author He, Liyuan
Lai, Chun‐Ta
Mayes, Melanie A.
Murayama, Shohei
Xu, Xiaofeng
author_facet He, Liyuan
Lai, Chun‐Ta
Mayes, Melanie A.
Murayama, Shohei
Xu, Xiaofeng
author_sort He, Liyuan
title Microbial seasonality promotes soil respiratory carbon emission in natural ecosystems: A modeling study
title_short Microbial seasonality promotes soil respiratory carbon emission in natural ecosystems: A modeling study
title_full Microbial seasonality promotes soil respiratory carbon emission in natural ecosystems: A modeling study
title_fullStr Microbial seasonality promotes soil respiratory carbon emission in natural ecosystems: A modeling study
title_full_unstemmed Microbial seasonality promotes soil respiratory carbon emission in natural ecosystems: A modeling study
title_sort microbial seasonality promotes soil respiratory carbon emission in natural ecosystems: a modeling study
publishDate 2022
url http://www.osti.gov/servlets/purl/1787933
https://www.osti.gov/biblio/1787933
https://doi.org/10.1111/gcb.15627
geographic Arctic
geographic_facet Arctic
genre Arctic
genre_facet Arctic
op_relation http://www.osti.gov/servlets/purl/1787933
https://www.osti.gov/biblio/1787933
https://doi.org/10.1111/gcb.15627
doi:10.1111/gcb.15627
op_doi https://doi.org/10.1111/gcb.15627
container_title Global Change Biology
container_volume 27
container_issue 13
container_start_page 3035
op_container_end_page 3051
_version_ 1772812775943307264