DeepSZ: identification of Sunyaev–Zel’dovich galaxy clusters using deep learning

Galaxy clusters identified via the Sunyaev–Zel’dovich (SZ) effect are a key ingredient in multiwavelength cluster cosmology. In this paper, we present and compare three methods of cluster identification: the standard matched filter (MF) method in SZ cluster finding, a convolutional neural networks (...

Full description

Bibliographic Details
Published in:Monthly Notices of the Royal Astronomical Society
Main Authors: Lin, Z., Huang, N., Avestruz, C., Wu, W. L. K., Trivedi, S., Caldeira, J., Nord, B.
Language:unknown
Published: 2023
Subjects:
Online Access:http://www.osti.gov/servlets/purl/1780815
https://www.osti.gov/biblio/1780815
https://doi.org/10.1093/mnras/stab2229
id ftosti:oai:osti.gov:1780815
record_format openpolar
spelling ftosti:oai:osti.gov:1780815 2023-07-30T04:06:55+02:00 DeepSZ: identification of Sunyaev–Zel’dovich galaxy clusters using deep learning Lin, Z. Huang, N. Avestruz, C. Wu, W. L. K. Trivedi, S. Caldeira, J. Nord, B. 2023-07-03 application/pdf http://www.osti.gov/servlets/purl/1780815 https://www.osti.gov/biblio/1780815 https://doi.org/10.1093/mnras/stab2229 unknown http://www.osti.gov/servlets/purl/1780815 https://www.osti.gov/biblio/1780815 https://doi.org/10.1093/mnras/stab2229 doi:10.1093/mnras/stab2229 79 ASTRONOMY AND ASTROPHYSICS 2023 ftosti https://doi.org/10.1093/mnras/stab2229 2023-07-11T10:03:14Z Galaxy clusters identified via the Sunyaev–Zel’dovich (SZ) effect are a key ingredient in multiwavelength cluster cosmology. In this paper, we present and compare three methods of cluster identification: the standard matched filter (MF) method in SZ cluster finding, a convolutional neural networks (CNN), and a ‘combined’ identifier. We apply the methods to simulated millimeter maps for several observing frequencies for a survey similar to SPT-3G, the third-generation camera for the South Pole Telescope. The MF requires image pre-processing to remove point sources and a model for the noise, while the CNN requires very little pre-processing of images. Additionally, the CNN requires tuning of hyperparameters in the model and takes cut-out images of the sky as input, identifying the cut-out as cluster-containing or not. We compare differences in purity and completeness. The MF signal-to-noise ratio depends on both mass and redshift. Our CNN, trained for a given mass threshold, captures a different set of clusters than the MF, some with signal-to-noise-ratio below the MF detection threshold. However, the CNN tends to mis-classify cut-out whose clusters are located near the edge of the cut-out, which can be mitigated with staggered cut-out. We leverage the complementarity of the two methods, combining the scores from each method for identification. The purity and completeness are both 0.61 for MF, and 0.59 and 0.61 for CNN. The combined method yields 0.60 and 0.77, a significant increase for completeness with a modest decrease in purity. We advocate for combined methods that increase the confidence of many low signal-to-noise clusters. Other/Unknown Material South pole SciTec Connect (Office of Scientific and Technical Information - OSTI, U.S. Department of Energy) South Pole Monthly Notices of the Royal Astronomical Society 507 3 4149 4164
institution Open Polar
collection SciTec Connect (Office of Scientific and Technical Information - OSTI, U.S. Department of Energy)
op_collection_id ftosti
language unknown
topic 79 ASTRONOMY AND ASTROPHYSICS
spellingShingle 79 ASTRONOMY AND ASTROPHYSICS
Lin, Z.
Huang, N.
Avestruz, C.
Wu, W. L. K.
Trivedi, S.
Caldeira, J.
Nord, B.
DeepSZ: identification of Sunyaev–Zel’dovich galaxy clusters using deep learning
topic_facet 79 ASTRONOMY AND ASTROPHYSICS
description Galaxy clusters identified via the Sunyaev–Zel’dovich (SZ) effect are a key ingredient in multiwavelength cluster cosmology. In this paper, we present and compare three methods of cluster identification: the standard matched filter (MF) method in SZ cluster finding, a convolutional neural networks (CNN), and a ‘combined’ identifier. We apply the methods to simulated millimeter maps for several observing frequencies for a survey similar to SPT-3G, the third-generation camera for the South Pole Telescope. The MF requires image pre-processing to remove point sources and a model for the noise, while the CNN requires very little pre-processing of images. Additionally, the CNN requires tuning of hyperparameters in the model and takes cut-out images of the sky as input, identifying the cut-out as cluster-containing or not. We compare differences in purity and completeness. The MF signal-to-noise ratio depends on both mass and redshift. Our CNN, trained for a given mass threshold, captures a different set of clusters than the MF, some with signal-to-noise-ratio below the MF detection threshold. However, the CNN tends to mis-classify cut-out whose clusters are located near the edge of the cut-out, which can be mitigated with staggered cut-out. We leverage the complementarity of the two methods, combining the scores from each method for identification. The purity and completeness are both 0.61 for MF, and 0.59 and 0.61 for CNN. The combined method yields 0.60 and 0.77, a significant increase for completeness with a modest decrease in purity. We advocate for combined methods that increase the confidence of many low signal-to-noise clusters.
author Lin, Z.
Huang, N.
Avestruz, C.
Wu, W. L. K.
Trivedi, S.
Caldeira, J.
Nord, B.
author_facet Lin, Z.
Huang, N.
Avestruz, C.
Wu, W. L. K.
Trivedi, S.
Caldeira, J.
Nord, B.
author_sort Lin, Z.
title DeepSZ: identification of Sunyaev–Zel’dovich galaxy clusters using deep learning
title_short DeepSZ: identification of Sunyaev–Zel’dovich galaxy clusters using deep learning
title_full DeepSZ: identification of Sunyaev–Zel’dovich galaxy clusters using deep learning
title_fullStr DeepSZ: identification of Sunyaev–Zel’dovich galaxy clusters using deep learning
title_full_unstemmed DeepSZ: identification of Sunyaev–Zel’dovich galaxy clusters using deep learning
title_sort deepsz: identification of sunyaev–zel’dovich galaxy clusters using deep learning
publishDate 2023
url http://www.osti.gov/servlets/purl/1780815
https://www.osti.gov/biblio/1780815
https://doi.org/10.1093/mnras/stab2229
geographic South Pole
geographic_facet South Pole
genre South pole
genre_facet South pole
op_relation http://www.osti.gov/servlets/purl/1780815
https://www.osti.gov/biblio/1780815
https://doi.org/10.1093/mnras/stab2229
doi:10.1093/mnras/stab2229
op_doi https://doi.org/10.1093/mnras/stab2229
container_title Monthly Notices of the Royal Astronomical Society
container_volume 507
container_issue 3
container_start_page 4149
op_container_end_page 4164
_version_ 1772819893313339392