Acclimation and adaptation components of the temperature dependence of plant photosynthesis at the global scale
The temperature response of photosynthesis is one of the key factors determining predicted responses to warming in global vegetation models (GVMs). The response may vary geographically, owing to genetic adaptation to climate, and temporally, as a result of acclimation to changes in ambient temperatu...
Published in: | New Phytologist |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Language: | unknown |
Published: |
2023
|
Subjects: | |
Online Access: | http://www.osti.gov/servlets/purl/1572811 https://www.osti.gov/biblio/1572811 https://doi.org/10.1111/nph.15668 |
id |
ftosti:oai:osti.gov:1572811 |
---|---|
record_format |
openpolar |
spelling |
ftosti:oai:osti.gov:1572811 2023-07-30T04:01:52+02:00 Acclimation and adaptation components of the temperature dependence of plant photosynthesis at the global scale Kumarathunge, Dushan P. Medlyn, Belinda E. Drake, John E. Tjoelker, Mark G. Aspinwall, Michael J. Battaglia, Michael Cano, Francisco J. Carter, Kelsey R. Cavaleri, Molly A. Cernusak, Lucas A. Chambers, Jeffrey Q. Crous, Kristine Y. De Kauwe, Martin G. Dillaway, Dylan N. Dreyer, Erwin Ellsworth, David S. Ghannoum, Oula Han, Qingmin Hikosaka, Kouki Jensen, Anna M. Kelly, Jeff W. G. Kruger, Eric L. Mercado, Lina M. Onoda, Yusuke Reich, Peter B. Rogers, Alistair Slot, Martijn Smith, Nicholas G. Tarvainen, Lasse Tissue, David T. Togashi, Henrique F. Tribuzy, Edgard S. Uddling, Johan Vårhammar, Angelica Wallin, Göran Warren, Jeffrey M. Way, Danielle A. 2023-06-30 application/pdf http://www.osti.gov/servlets/purl/1572811 https://www.osti.gov/biblio/1572811 https://doi.org/10.1111/nph.15668 unknown http://www.osti.gov/servlets/purl/1572811 https://www.osti.gov/biblio/1572811 https://doi.org/10.1111/nph.15668 doi:10.1111/nph.15668 2023 ftosti https://doi.org/10.1111/nph.15668 2023-07-11T09:37:53Z The temperature response of photosynthesis is one of the key factors determining predicted responses to warming in global vegetation models (GVMs). The response may vary geographically, owing to genetic adaptation to climate, and temporally, as a result of acclimation to changes in ambient temperature. Our goal was to develop a robust quantitative global model representing acclimation and adaptation of photosynthetic temperature responses. We quantified and modelled key mechanisms responsible for photosynthetic temperature acclimation and adaptation using a global dataset of photosynthetic CO 2 response curves, including data from 141 C 3 species from tropical rainforest to Arctic tundra. We separated temperature acclimation and adaptation processes by considering seasonal and common-garden datasets, respectively. The observed global variation in the temperature optimum of photosynthesis was primarily explained by biochemical limitations to photosynthesis, rather than stomatal conductance or respiration. We found acclimation to growth temperature to be a stronger driver of this variation than adaptation to temperature at climate of origin. We developed a summary model to represent photosynthetic temperature responses and showed that it predicted the observed global variation in optimal temperatures with high accuracy. This novel algorithm should enable improved prediction of the function of global ecosystems in a warming climate. Other/Unknown Material Arctic Tundra SciTec Connect (Office of Scientific and Technical Information - OSTI, U.S. Department of Energy) Arctic New Phytologist 222 2 768 784 |
institution |
Open Polar |
collection |
SciTec Connect (Office of Scientific and Technical Information - OSTI, U.S. Department of Energy) |
op_collection_id |
ftosti |
language |
unknown |
description |
The temperature response of photosynthesis is one of the key factors determining predicted responses to warming in global vegetation models (GVMs). The response may vary geographically, owing to genetic adaptation to climate, and temporally, as a result of acclimation to changes in ambient temperature. Our goal was to develop a robust quantitative global model representing acclimation and adaptation of photosynthetic temperature responses. We quantified and modelled key mechanisms responsible for photosynthetic temperature acclimation and adaptation using a global dataset of photosynthetic CO 2 response curves, including data from 141 C 3 species from tropical rainforest to Arctic tundra. We separated temperature acclimation and adaptation processes by considering seasonal and common-garden datasets, respectively. The observed global variation in the temperature optimum of photosynthesis was primarily explained by biochemical limitations to photosynthesis, rather than stomatal conductance or respiration. We found acclimation to growth temperature to be a stronger driver of this variation than adaptation to temperature at climate of origin. We developed a summary model to represent photosynthetic temperature responses and showed that it predicted the observed global variation in optimal temperatures with high accuracy. This novel algorithm should enable improved prediction of the function of global ecosystems in a warming climate. |
author |
Kumarathunge, Dushan P. Medlyn, Belinda E. Drake, John E. Tjoelker, Mark G. Aspinwall, Michael J. Battaglia, Michael Cano, Francisco J. Carter, Kelsey R. Cavaleri, Molly A. Cernusak, Lucas A. Chambers, Jeffrey Q. Crous, Kristine Y. De Kauwe, Martin G. Dillaway, Dylan N. Dreyer, Erwin Ellsworth, David S. Ghannoum, Oula Han, Qingmin Hikosaka, Kouki Jensen, Anna M. Kelly, Jeff W. G. Kruger, Eric L. Mercado, Lina M. Onoda, Yusuke Reich, Peter B. Rogers, Alistair Slot, Martijn Smith, Nicholas G. Tarvainen, Lasse Tissue, David T. Togashi, Henrique F. Tribuzy, Edgard S. Uddling, Johan Vårhammar, Angelica Wallin, Göran Warren, Jeffrey M. Way, Danielle A. |
spellingShingle |
Kumarathunge, Dushan P. Medlyn, Belinda E. Drake, John E. Tjoelker, Mark G. Aspinwall, Michael J. Battaglia, Michael Cano, Francisco J. Carter, Kelsey R. Cavaleri, Molly A. Cernusak, Lucas A. Chambers, Jeffrey Q. Crous, Kristine Y. De Kauwe, Martin G. Dillaway, Dylan N. Dreyer, Erwin Ellsworth, David S. Ghannoum, Oula Han, Qingmin Hikosaka, Kouki Jensen, Anna M. Kelly, Jeff W. G. Kruger, Eric L. Mercado, Lina M. Onoda, Yusuke Reich, Peter B. Rogers, Alistair Slot, Martijn Smith, Nicholas G. Tarvainen, Lasse Tissue, David T. Togashi, Henrique F. Tribuzy, Edgard S. Uddling, Johan Vårhammar, Angelica Wallin, Göran Warren, Jeffrey M. Way, Danielle A. Acclimation and adaptation components of the temperature dependence of plant photosynthesis at the global scale |
author_facet |
Kumarathunge, Dushan P. Medlyn, Belinda E. Drake, John E. Tjoelker, Mark G. Aspinwall, Michael J. Battaglia, Michael Cano, Francisco J. Carter, Kelsey R. Cavaleri, Molly A. Cernusak, Lucas A. Chambers, Jeffrey Q. Crous, Kristine Y. De Kauwe, Martin G. Dillaway, Dylan N. Dreyer, Erwin Ellsworth, David S. Ghannoum, Oula Han, Qingmin Hikosaka, Kouki Jensen, Anna M. Kelly, Jeff W. G. Kruger, Eric L. Mercado, Lina M. Onoda, Yusuke Reich, Peter B. Rogers, Alistair Slot, Martijn Smith, Nicholas G. Tarvainen, Lasse Tissue, David T. Togashi, Henrique F. Tribuzy, Edgard S. Uddling, Johan Vårhammar, Angelica Wallin, Göran Warren, Jeffrey M. Way, Danielle A. |
author_sort |
Kumarathunge, Dushan P. |
title |
Acclimation and adaptation components of the temperature dependence of plant photosynthesis at the global scale |
title_short |
Acclimation and adaptation components of the temperature dependence of plant photosynthesis at the global scale |
title_full |
Acclimation and adaptation components of the temperature dependence of plant photosynthesis at the global scale |
title_fullStr |
Acclimation and adaptation components of the temperature dependence of plant photosynthesis at the global scale |
title_full_unstemmed |
Acclimation and adaptation components of the temperature dependence of plant photosynthesis at the global scale |
title_sort |
acclimation and adaptation components of the temperature dependence of plant photosynthesis at the global scale |
publishDate |
2023 |
url |
http://www.osti.gov/servlets/purl/1572811 https://www.osti.gov/biblio/1572811 https://doi.org/10.1111/nph.15668 |
geographic |
Arctic |
geographic_facet |
Arctic |
genre |
Arctic Tundra |
genre_facet |
Arctic Tundra |
op_relation |
http://www.osti.gov/servlets/purl/1572811 https://www.osti.gov/biblio/1572811 https://doi.org/10.1111/nph.15668 doi:10.1111/nph.15668 |
op_doi |
https://doi.org/10.1111/nph.15668 |
container_title |
New Phytologist |
container_volume |
222 |
container_issue |
2 |
container_start_page |
768 |
op_container_end_page |
784 |
_version_ |
1772812613906857984 |