Formation of an ultracarbonaceous Antarctic micrometeorite through minimal aqueous alteration in a small porous icy body

A comprehensive study of the organic chemistry and mineralogy of an ultracarbonaceous micrometeorite (UCAMM D05IB80) collected from near the Dome Fuji Station, Antarctica, was carried out to understand the genetic relationship among organic materials, silicates, and water. The micrometeorite is comp...

Full description

Bibliographic Details
Published in:Geochimica et Cosmochimica Acta
Main Authors: Yabuta, Hikaru, Noguchi, Takaaki, Itoh, Shoichi, Nakamura, Tomoki, Miyake, Akira, Tsujimoto, Shinichi, Ohashi, Noriaki, Sakamoto, Naoya, Hashiguchi, Minako, Abe, Ken-ichi, Okubo, Aya, Kilcoyne, A. L. David, Tachibana, Shogo, Okazaki, Ryuji, Terada, Kentaro, Ebihara, Mitsuru, Nagahara, Hiroko
Language:unknown
Published: 2023
Subjects:
Online Access:http://www.osti.gov/servlets/purl/1530299
https://www.osti.gov/biblio/1530299
https://doi.org/10.1016/j.gca.2017.06.047
Description
Summary:A comprehensive study of the organic chemistry and mineralogy of an ultracarbonaceous micrometeorite (UCAMM D05IB80) collected from near the Dome Fuji Station, Antarctica, was carried out to understand the genetic relationship among organic materials, silicates, and water. The micrometeorite is composed of a dense aggregate of ~5 µm-sized hollow ellipsoidal organic material containing submicrometer-sized phases such as glass with embedded metal and sulfides (GEMS) and mineral grains. There is a wide area of organic material (~15 × 15 μm) in its interior. Low-Ca pyroxene is much more abundant than olivine and shows various Mg/(Mg + Fe) ratios ranging from ~1.0 to 0.78, which is common to previous works on UCAMMs. By contrast, GEMS grains in this UCAMM have unusual chemical compositions. They are depleted in both Mg and S, which suggests that these elements were leached out from the GEMS grains during very weak aqueous alteration, without the formation of phyllosilicates. The organic materials have two textures—smooth and globular with an irregular outline—and these are composed of imine, nitrile and/or aromatic nitrogen heterocycles, and amide. The ratio of nitrogen to carbon (N/C) in the smooth region of the organics is ~0.15, which is five times higher than that of insoluble organic macromolecules in types 1 and 2 carbonaceous chondritic meteorites. In addition, the UCAMM organic materials are soluble in epoxy and are thus hydrophilic; this polar nature indicates that they are very primitive. The surface of the material is coated with an inorganic layer, a few nanometers thick, that consists of C, O, Si, S, and Fe. Sulfur is also contained in the interior, implying the presence of organosulfur moieties. There are no isotopic anomalies of D, 13 C, or 15 N in the organic material. Interstellar photochemistry alone would not be sufficient to explain the N/C ratio of the UCAMM organics; therefore, we imply that a very small amount of fluid on a comet must have been necessary for the formation of the UCAMM. The GEMS ...